8 физика ход лучей линзы фильм. Преломление света

Преломление света - изменение направления распространения оптического излучения (света) при его прохождении через границу раздела двух сред.

Законы преломления света:

1) Луч падающий, луч преломленный и перпендикуляр, восставленный в точку падения к границе раздела двух сред, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данной пары сред. Эта постоянная называется показателем преломления n 21 второй среды относительно первой:

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления n 21 =n 2 /n 1

Абсолютным показателем преломления среды называется величина n, равная отношению скорости с электромагнитных волн в вакууме к их фазовой скорости v в среде n=c/v

3) Луч света, падающий на поверхность раздела двух сред перпендикулярно поверхности, проходит в другую среду, не преломляясь.

4) Падающий и преломленный лучи обратимы: если падающий луч направить по пути преломленного луча, то преломленный луч пойдет по пути падающего луча.

Полное внутреннее отражение - отражение света на поверхности раздела двух прозрачных веществ, не сопровождаемое преломлением. Полное внутреннее отражение происходит при падении пучка света на поверхность, отделяющую данную среду от другой, оптически менее плотной среды, когда угол падения больше предельного угла преломления.

Ход лучей в линзе .

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой

линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы бывают собирающими и рассеивающими. Собирающие (положительные) линзы - это линзы, преобразующие пучок параллельных лучей в сходящийся. Рассеивающие (отрицательные) линзы - это линзы, преобразующие пучок параллельных лучей в расходящийся. Линзы, у которых середины толще чем края - собирающие, а у которых толще края - рассеивающие.

Прямая, проходящая через центры кривизны O1 и O2 сферических поверхностей, называется главной оптической осью линзы . В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями.

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F, которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F", которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус. Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначаетcя той же буквой F. У собирающей линзы считают F > 0, у рассеивающей F < 0.

Величину D, обратную фокусному расстоянию, называют оптической силой линзы. Единицей измерения оптической силы в СИ является диоптрия (дптр).

Ход лучей в линзах

Основное свойство линз – способность давать изображения предметов. Изображения бывают прямыми или перевернутыми, действительными или мнимыми, увеличенными или уменьшенными.

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей (замечательных лучей), ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Построение изображения в тонкой линзе:

1. Луч, параллельный главной оптической оси, проходит через точку главного фокуса.

2. Луч, параллельный побочной оптической оси, проходит через побочный фокус (точку на побочной оптической оси).

3. Луч, проходящий через оптический центр линзы, не преломляется.

4. Действительное изображение - пересечение лучей. Мнимое изображение - пересечение продолжений лучей

Собирающая линза

1. Если предмет располагается за двойным фокусом.

Чтобы построить изображение предмета, нужно пустить два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета. Точно так же строится изображение нижней точки предмета. В результате построения получается уменьшенное, перевернутое, действительное изображение.

2.Если предмет располагается в точке двойного фокуса.

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет через линзу, не преломившись. На пересечении двух лучей ставим точку А1. Это и будет изображение верхней точки предмета. Точно так же строится изображение нижней точки предмета. В результате построения получается изображение, высота которого совпадает с высотой предмета. Изображение является перевернутым и действительным

3. Если предмет располагается в пространстве между фокусом и двойным фокусом

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы. Через линзу он проходит, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета. Точно так же строится изображение нижней точки предмета. В результате построения получается увеличенное, перевернутое, действительное изображение

Рассеивающая линза

Предмет располагается перед рассеивающей линзой.

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется таким образом, что продолжение этого луча пойдет в фокус. А второй луч, который проходит через оптический центр, пересекает продолжение первого луча в точке А’, – это и будет изображение верхней точки предмета.Таким же образом строится изображение нижней точки предмета. В результате получается прямое, уменьшенное, мнимое изображение. При перемещении предмета относительно рассеивающей линзы всегда получается прямое, уменьшенное, мнимое изображение. При перемещении предмета относительно рассеивающей линзы всегда получается прямое, уменьшенное, мнимое изображение.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью

формулы тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

Величины d и f также подчиняются определенному правилу знаков: d > 0 и f > 0 – для действительных предметов

(то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений; d < 0 и f < 0 – для мнимых источников и изображений.

Направление движения энергии световой волны определяется вектором Пойнтинга (система единиц СГС Гаусса), здесь - скорость света в вакууме, и - векторные напряженности электрического и магнитного полей. Длина вектора Пойнтинга равна плотности потока энергии, то есть количеству энергии, которое в единицу времени протекает через единичную площадку перпендикулярную вектору . В изотропной среде направление движения поверхности фиксированной фазы совпадает с направлением движения энергии световой волны. В кристалле эти направления могут не совпадать. Далее будем рассматривать изотропную среду.

Световые лучи.

Линии векторного поля , вдоль которых распространяется свет, называются лучами. Если поверхности равных фаз представляют собой параллельные плоскости, то волна называется плоской. Плоской волне соответствует параллельный пучок лучей, так как лучи в изотропной среде перпендикулярны поверхностям равных фаз. Сферической волной называется волна с поверхностями равных фаз сферической формы. Ей соответствует пучок лучей, выходящих из одной точки или собирающихся в одну точку. В этих двух случаях говорят соответственно о расходящейся и о сходящейся сферической волне.

Приближение геометрической оптики.

Если длина световой волны очень мала по сравнению со всеми размерами оптических приборов, то явлениями дифракции и интерференции можно пренебречь. Такое рассмотрение распространения света называется приближением геометрической оптики.

Геометрическая оптика обычно ограничивается рассмотрением распространения света в однородных средах и предметах, состоящих из однородных сред. Распространение света в среде с плавно изменяющимся показателем преломления описывается уравнением эйконала.

Отражение и преломление света.

Если световая волна распространяется в однородной среде без препятствий, то волна распространяется по прямым линиям - лучам. На границе раздела двух однородных сред лучи отражаются и преломляются (рис.1). Отраженный (3) и преломленный (2) лучи находятся в одной плоскости с падающим лучом (1) и перпендикуляром к границе раздела двух сред (). Угол падения равен углу отражения . Угол преломления можно найти из равенства

где и - показатели преломления первой и второй среды.

Отражение от плоского зеркала.

Плоское зеркало, как и сферическое, отражает лучи света в соответствии с законом отражения (угол падения равен углу отражения). Свет после отражения от плоского зеркала во всех смыслах распространяется так, как если бы вместо зеркала стояло окошко, а источник света располагался бы за поверхностью зеркала, за окошком. Интересно, что изображение в зеркале находится не просто в другом месте, оно вывернуто "наизнанку", при этом "правое" и "левое" меняются местами. Например, правая спираль становится левой спиралью.

Преломление света, также как и отражение, можно рассматривать, как "кажущееся" изменение положения источника света. Этот факт проявляется в кажущемся изломе прямой палки, наполовину опущенной в воду под углом к поверхности воды. Мнимое положение источника света в данном случае будет различаться для лучей, падающих на границу раздела двух сред под различными углами. По этой причине обычно избегают говорить о мнимом положении источника света при преломлении.

Призма.

В задачах с призмами поворот света призмой можно рассматривать как два последовательных преломления света на плоских гранях призмы при входе света в призму и при его выходе.

Особый интерес представляет частный случай призмы с малым углом при вершине ( на рис. 2). Такую призму называют тонкой призмой. Обычно рассматриваются задачи, в которых свет падает на тонкую призму почти перпендикулярно ее поверхности. При этом за два преломления лучи света поворачивают на малый угол в плоскости перпендикулярной ребру призмы в сторону утолщения призмы (рис. 2). Угол поворота не зависит от угла падения света в приближении малых углов падения. Это означает, что призма поворачивает "кажущееся" положение источника света на угол в плоскости перпендикулярной ребру призмы.

Из двух таких тонких призм состоит, в частности, бипризма Френеля (рис. 3), проходя через которую свет от точечного источника распространяется далее так, как если бы свет излучался двумя точечными когерентными источниками.

Оптическая ось.

Оптической осью называется прямая линия, проходящая через центры кривизны отражающих и преломляющих поверхностей. Если система имеет оптическую ось, то это центрированная оптическая система .

Линза.

Обычно прохождение света через линзу рассматривается в приближении параксиальной оптики, это означает, что направление распространения света всегда составляет малый угол с оптической осью, и лучи пересекают любую поверхность на малом расстоянии от оптической оси.

Линза может быть собирающей или рассеивающей.

Лучи, параллельные оптической оси, после собирающей линзы проходят через одну и ту же точку. Эта точка называется фокусом линзы. Расстояние от линзы до ее фокуса называется фокусным расстоянием. Плоскость, перпендикулярная оптической оси и проходящая через фокус линзы, называется фокальной плоскостью. Параллельный пучок лучей, наклоненный к оптической оси, собирается за линзой в одну точку ( на рис. 4) в фокальной плоскости линзы.

Рассеивающая линза преобразует параллельный оптической оси пучок лучей в расходящийся пучок (рис. 5). Если расходящиеся лучи продолжить назад, то они пересекутся в одной точке - фокусе рассеивающей линзы. При небольшом повороте пучка параллельных лучей точка пересечения перемещается по фокальной плоскости рассеивающей линзы.

Построение изображений.

В задачах на построение изображений подразумевается, что протяженный источник света состоит из некогерентных точечных источников. В этом случае изображение протяженного источника света состоит из изображений каждой точки источника, полученных независимо друг от друга.

Изображение точечного источника - это точка пересечения всех лучей после прохождения через систему, лучей испущенных точечным источником света. Точечный источник испускает сферическую световую волну. В приближении параксиальной оптики сферическая волна, проходя через линзу (рис. 6), распространяется и далее в виде сферической волны, но с другим значением радиуса кривизны. Лучи за линзой либо сходятся в одну точку (рис. 6а), которую называют действительным изображением источника (точка ), либо расходятся (рис. 6б). В последнем случае продолжения лучей назад пересекаются в некоторой точке , которая называется мнимым изображением источника света.

В параксиальном приближении все лучи, исходящие из одной точки до линзы, после линзы пересекаются в одной точке, поэтому для построения изображения точечного источника достаточно найти точку пересечения "удобных нам" двух лучей, эта точка и будет изображением.

Если перпендикулярно оптической оси поставить лист бумаги (экран) так, чтобы изображение точечного источника попало на экран, то в случае действительного изображения на экране будет видна светящаяся точка, а в случае мнимого изображения - нет.

Построение изображения в тонкой линзе.

Есть три луча, удобных для построения изображения точечного источника света в тонкой линзе.

Первый луч проходит через центр линзы. После линзы он не изменяет своего направления (рис. 7) как для собирающей так и для рассеивающей линзы. Это справедливо только в том случае, если среда с обеих сторон линзы имеет одинаковый показатель преломления . Два других удобных луча рассмотрим на примере собирающей линзы. Один из них проходит через передний фокус (рис. 8а), или его продолжение назад проходит через передний фокус (рис. 8б). После линзы такой луч пойдет параллельно оптической оси. Другой луч проходит до линзы параллельно оптической оси, а после линзы через задний фокус (рис. 8в).

Удобные для построения изображения лучи в случае рассеивающей линзы показаны на рис. 9а,9б.

Точка пересечения, мнимого или действительного, любой пары из этих трех лучей, прошедших линзу, совпадает с изображением источника.

В задачах по оптике иногда возникает потребность найти ход луча не для одного из удобных нам трех лучей, а для произвольного луча (1 на рис. 10), направление которого до линзы определено условиями задачи.

В таком случае полезно рассмотреть, например, параллельный ему луч (2 на рис. 10б), проходящий через центр линзы, независимо от того есть или нет такой луч на самом деле.

Параллельные лучи собираются за линзой в фокальной плоскости. Эту точку ( на рис. 10б) можно найти как точку пересечения фокальной плоскости и вспомогательного луча 2, проходящего линзу без изменения направления. Вторая точка, необходимая и достаточная для построения хода луча 1 после линзы, это точка на тонкой линзе ( на рис. 10б), в которую упирается луч 1 с той стороны, где его направление известно.

Построение изображения в толстой линзе.

Тонкая линза - линза, толщина которой много меньше ее фокусного расстояния . Если линзу нельзя считать тонкой, то каждую из двух сферических поверхностей линзы можно рассматривать как отдельную тонкую линзу.

Тогда изображение в толстой линзе можно найти как изображение изображения. Первая сферическая поверхность толстой линзы дает изображение источника как изображение в тонкой линзе. Вторая сферическая поверхность дает изображение этого изображения.

Другой подход при построении изображений состоит в том, что вводится понятие главных плоскостей центрированной оптической системы, частным случаем которой может быть толстая линза. Центрированная оптическая система, которая может состоять и из большого числа линз, полностью характеризуется двумя фокальными и двумя главными плоскостями. Полностью характеризуется в том смысле, что знание положения этих четырех плоскостей достаточно для построения изображений. Все четыре плоскости перпендикулярны оптической оси, следовательно свойства оптической системы полностью определяются четырьмя точками пересечения четырех плоскостей с оптической осью. Эти точки называются кардинальными точками системы.

Для тонкой линзы обе главные плоскости совпадают с положением самой линзы. Для более сложных оптических систем существуют формулы расчета положения кардинальных точек через радиусы кривизны поверхностей линз и показатели их преломления .

Для построения изображения точечного источника достаточно рассмотреть прохождение через оптическую систему двух удобных нам лучей и найти точку их пересечения после линзы, либо точку пересечения продолжений лучей назад (для мнимого изображения).

Построение хода лучей проводится так, как будто между главными плоскостями системы находится тонкая линза, а пространство между главными плоскостями отсутствует. Пример построения приведен на рис. 11. и - главные плоскости системы.

Задача прохождения света через центрированную оптическую систему может быть решена не только геометрическим построением хода лучей, но и аналитически. Для аналитического решения задач удобен матричный метод .

Тема. Решение задач по теме "Линзы. Построение изображений в тонкой линзе. Формула линзы".


Цель:

  • - рассмотреть примеры решения задач на применение формулы тонкой линзы, свойства основных лучей и правила построения изображений в тонкой линзе, в системе двух линз.

Ход занятия

Прежде чем приступить к выполнению задания, необходимо повторить определения главной и побочной оптических осей линзы, фокуса, фокальной плоскости, свойства основных лучей при построении изображений в тонких линзах, формулу тонкой линзы (собирающей и рассеивающей), определение оптической силы линзы, увеличения линзы.

Для проведения занятия учащимся предлагается несколько расчетных задач с объяснением их решения и задачи для самостоятельной работы.

Качественные задачи

  1. С помощью собирающей линзы на экране получено действительное изображение предмета с увеличением Г 1 . Не изменяя положение линзы, поменяли местами предмет и экран. Каким окажется увеличение Г 2 в этом случае?
  2. Как надо расположить две собирающие линзы с фокусными расстояниями F 1 и F 2 , чтобы параллельный пучок света, пройдя через них, остался параллельным?
  3. Объясните, почему для того, чтобы получить четкое изображение предмета, близорукий обычно щурит глаза?
  4. Как изменится фокусное расстояние линзы, если ее температура повысится?
  5. На рецепте врача написано: +1,5 Д. Расшифруйте, какие это очки и для каких глаз?

Примеры решения расчетных задач


Задача 1. Заданы главная оптическая ось линзы NN , положение источника S и его изображения S ´. Найдите построением положение оптического центра линзы С и ее фокусов для трех случаев (рис. 1).

Решение:

Для нахождения положения оптического центра С линзы и ее фокусов F используем основные свойства линзы и лучей, проходящих через оптический центр, фокусы линзы или параллельно главной оптической оси линзы.

Случай 1. Предмет S и его изображение расположены по одну сторону от главной оптической оси NN (рис. 2).


Проведем через S и S ´ прямую (побочную ось) до пересечения с главной оптической осью NN в точке С . Точка С определяет положение оптического центра линзы, расположенной перпендикулярно оси NN . Лучи, идущие через оптический центр С , не преломляются. Луч SA , параллельный NN , преломляется и идет через фокус F и изображение S ´, причем через S ´ идет продолжение луча SA . Это значит, что изображение S ´ в линзе является мнимым. Предмет S расположен между оптическим центром и фокусом линзы. Линза является собирающей.

Случай 2. Проведем через S и S ´ побочную ось до пересечения с главной оптической осью NN в точке С - оптическом центре линзы (рис. 3).


Луч SA , параллельный NN , преломляясь, идет через фокус F и изображение S ´, причем через S ´ идет продолжение луча SA . Это значит, что изображение мнимое, а линза, как видно из построения, рассеивающая.

Случай 3. Предмет S и его изображение лежат по разные стороны от главной оптической оси NN (рис. 4).


Соединив S и S ´, находим положение оптического центра линзы и положение линзы. Луч SA , параллельный NN , преломляется и через фокус F идет в точку S ´. Луч через оптический центр идет без преломления.

Задача 2. На рис. 5 изображен луч АВ , прошедший сквозь рассеивающую линзу. Постройте ход луча падающего, если положение фокусов линзы известно.


Решение:

Продолжим луч АВ до пересечения с фокальной плоскостью РР в точке F ´ и проведем побочную ось ОО через F ´ и С (рис. 6).


Луч, идущий вдоль побочной оси ОО , пройдет, не меняя своего направления, луч DA , параллельный ОО , преломляется по направлению АВ так, что его продолжение идет через точку F ´.

Задача 3. На собирающую линзу с фокусным расстоянием F 1 = 40 см падает параллельный пучок лучей. Где следует поместить рассеивающую линзу с фокусным расстоянием F 2 = 15 см, чтобы пучок лучей после прохождения двух линз остался параллельным?

Решение: По условию пучок падающих лучей ЕА параллелен главной оптической оси NN , после преломления в линзах он должен таковым и остаться. Это возможно, если рассеивающая линза расположена так, чтобы задние фокусы линз F 1 и F 2 совпали. Тогда продолжение луча АВ (рис. 7), падающего на рассеивающую линзу, проходит через ее фокус F 2 , и по правилу построения в рассеивающей линзе преломленный луч BD будет параллелен главной оптической оси NN , следовательно, параллелен лучу ЕА . Из рис. 7 видно, что рассеивающую линзу следует поместить на расстоянии d=F 1 -F 2 =(40-15)(см)=25 см от собирающей линзы.


Ответ: на расстоянии 25 см от собирающей линзы.

Задача 4. Высота пламени свечи 5 см. Линза дает на экране изображение этого пламени высотой 15 см. Не трогая линзы, свечу отодвинули на l = 1,5 см дальше от линзы и, придвинув экран, вновь получили резкое изображение пламени высотой 10 см. Определите главное фокусное расстояние F линзы и оптическую силу линзы в диоптриях.

Решение: Применим формулу тонкой линзы , где d - расстояние от предмета до линзы, f - расстояние от линзы до изображения, для двух положений предмета:

. (2)


Из подобных треугольников АОВ и A 1 OB 1 (рис. 8) поперечное увеличение линзы будет равно = , откуда f 1 = Γ 1 d 1 .

Аналогично для второго положения предмета после передвижения его на l : , откуда f 2 = (d 1 + l )Γ 2 .
Подставляя f 1 и f 2 в (1) и (2), получим:

. (3)
Из системы уравнений (3), исключив d 1 , находим

.
Оптическая сила линзы

Ответ: , дптр.

Задача 5. Двояковыпуклая линза, сделанная из стекла с показателем преломления n = 1,6, имеет фокусное расстояние F 0 = 10 см в воздухе (n 0 = 1). Чему будет равно фокусное расстояние F 1 этой линзы, если ее поместить в прозрачную среду с показателем преломления n 1 = 1,5? Определите фокусное расстояние F 2 этой линзы в среде с показателем преломления n 2 = 1,7.

Решение:

Оптическая сила тонкой линзы определяется формулой

,
где n л - показатель преломления линзы, n ср - показатель преломления среды, F - фокусное расстояние линзы, R 1 и R 2 - радиусы кривизны ее поверхностей.

Если линза находится в воздухе, то

; (4)
n 1:

; (5)
в среде с показателем преломления n :

. (6)
Для определения F 1 и F 2 выразим из (4):

.
Подставим полученное значение в (5) и (6). Тогда получим

см,

см.
Знак "-" означает, что в среде с показателем преломления большим, чем у линзы (в оптически более плотной среде) собирающая линза становится рассеивающей.

Ответ: см, см.

Задача 6. Система состоит из двух линз с одинаковыми по модулю фокусными расстояниями. Одна из линз собирающая, другая рассеивающая. Линзы расположены на одной оси на некотором расстоянии друг от друга. Известно, что если поменять линзы местами, то действительное изображение Луны, даваемое этой системой, сместится на l = 20 см. Найдите фокусное расстояние каждой из линз.

Решение:

Рассмотрим случай, когда параллельные лучи 1 и 2 падают на рассеивающую линзу (рис. 9).


После преломления их продолжения пересекаются в точке S , являющейся фокусом рассеивающей линзы. Точка S является "предметом" для собирающей линзы. Ее изображение в собирающей линзе получим по правилам построения: лучи 1 и 2, падающие на собирающую линзу, после преломления проходят через точки пересечения соответствующих побочных оптических осей ОО и O´O´ с фокальной плоскостью РР собирающей линзы и пересекаются в точке S ´ на главной оптической оси NN , на расстоянии f 1 от собирающей линзы. Применим для собирающей линзы формулу

, (7)
где d 1 = F + a .


Пусть теперь лучи падают на собирающую линзу (рис. 10). Параллельные лучи 1 и 2 после преломления соберутся в точке S (фокусе собирающей линзы). Падая на рассеивающую линзу, лучи преломляются в рассеивающей линзе так, что продолжения этих лучей проходят через точки пересечения К 1 и К 2 соответствующих побочных осей О 1 О 1 и О 2 О 2 с фокальной плоскостью РР рассеивающей линзы. Изображение S ´ находится в точке пересечения продолжений вышедших лучей 1 и 2 с главной оптической осью NN на расстоянии f 2 от рассеивающей линзы.
Для рассеивающей линзы

, (8)
где d 2 = a - F .
Из (7) и (8) выразим f 1 и -f 2:NN и луча SA после преломления идущего в направлении A S ´ по правилам построения (через точку К 1 пересечения побочной оптической оси ОО , параллельной падающему лучу SA , с фокальной плоскостью Р 1 Р 1 собирающей линзы). Если поставить рассеивающую линзу Л 2 , то луч A S ´ изменяет направление в точке К , преломляясь (по правилу построения в рассеивающей линзе) в направлении K S ´´. Продолжение K S ´´ проходит через точку К 2 пересечения побочной оптической оси 0 ´0 ´ с фокальной плоскостью Р 2 Р 2 рассеивающей линзы Л 2 .

По формуле для рассеивающей линзы

,
где d - расстояние от линзы Л 2 до предмета S ´, f - расстояние от линзы Л 2 до изображения S ´´.

Отсюда см.
Знак "-" указывает, что линза рассеивающая.

Оптическая сила линзы дптр.

Ответ: см, дптр.

Задачи для самостоятельной работы


  1. Касьянов В.А. Физика. 11 кл.: Учебн. для общеобразоват. учреждений. - 2-е изд., дополн. - М.: Дрофа, 2004. - С. 281-306.
  2. Элементарный учебник физики /Под ред акад. Г.С. Ландсберга. - Т. 3. - М.: Физматлит, 2000 и предшествующие издания.
  3. Бутиков Е.И., Кондратьев А.С. Физика. Т. 2. Электродинамика. Оптика. - М.: Физматлит: Лаборатория базовых знаний; СПб.: Невский диалект, 2001. - С. 308-334.
  4. Белолипецкий С.Н., Еркович О.С., Казаковцева В.А. и др. Задачник по физике. - М.: Физматлит, 2005. - С. 215-237.
  5. Буховцев Б.Б., Кривченков В.Д., Мякишев Г.Я., Сараева И.М. Задачи по элементарной физике. - М.: Физматлит, 2000 и предшествующие издания.

Взгляните ещё раз на рисунки линз из предыдущего листка: эти линзы обладают заметной толщиной и существенной кривизной своих сферических границ. Мы намеренно рисовали такие линзы чтобы основные закономерности хода световых лучей проявились как можно более чётко.

4.5.1 Понятие тонкой линзы

Теперь, когда эти закономерности достаточно ясны, мы рассмотрим очень полезную идеализацию, которая называется тонкой линзой. В качестве примера на рис. 4.24 приведена двояковыпуклая линза; точки O1 и O2 являются центрами её сферических поверхностей6 , R1 и R2 радиусы кривизны этих поверхностей.

Рис. 4.24. К определению тонкой линзы

Так вот, линза считается тонкой, если её толщина MN очень мала. Нужно, правда, уточнить: мала по сравнению с чем?

Во-первых, предполагается, что MN R1 и MN R2 . Тогда поверхности линзы хоть и будут выпуклыми, но могут восприниматься как ¾почти плоские¿. Этот факт нам очень скоро пригодится.

Во-вторых, MN a, где a характерное расстояние от линзы до интересующего нас предмета. Собственно, лишь в таком случае мы и сможем корректно говорить о ¾расстоянии от предмета до линзы¿, не уточняя, до какой именно точки линзы берётся это самое расстояние.

Мы дали определение тонкой линзы, имея в виду двояковыпуклую линзу на рис. 4.24 . Это определение без каких-либо изменений переносится на все остальные виды линз. Итак: линза является тонкой, если толщина линзы много меньше радиусов кривизны её сферических границ и расстояния от линзы до предмета.

Условное обозначение тонкой собирающей линзы показано на рис. 4.25 .

Рис. 4.25. Обозначение тонкой собирающей линзы

6 Напомним, что прямая O1 O2 называется главной оптической осью линзы.

Условное обозначение тонкой рассеивающей линзы показано на рис. 4.26 .

Рис. 4.26. Обозначение тонкой рассеивающей линзы

В каждом случае прямая F F это главная оптическая ось линзы, а сами точки F её фокусы. Оба фокуса тонкой линзы расположены симметрично относительно линзы.

4.5.2 Оптический центр и фокальная плоскость

Точки M и N, обозначенные на рис. 4.24 , у тонкой линзы фактически сливаются в одну точку. Это точка O на рис.4.25 и4.26 , называемая оптическим центром линзы. Оптический центр находится на пересечении линзы с её главной оптической осью.

Расстояние OF от оптического центра до фокуса называется фокусным расстоянием линзы. Мы будем обозначать фокусное расстояние буквой f. Величина D, обратная фокусному расстоянию, есть оптическая сила линзы:

D = f 1 :

Оптическая сила измеряется в диоптриях (дптр). Так, если фокусное расстояние линзы равно 25 см, то её оптическая сила:

D = 0; 1 25 = 4 дптр:

Продолжаем знакомиться с новыми понятиями. Всякая прямая, проходящая через оптический центр линзы и отличная от главной оптической оси, называется побочной оптической осью. На рис. 4.27 изображена побочная оптическая ось прямая OP .

P (побочный фокус)

(фокальная плоскость)

Рис. 4.27. Побочная оптическая ось, фокальная плоскость и побочный фокус

Плоскость, проходящая через фокус перпендикулярно главной оптической оси, называется фокальной плоскостью. Фокальная плоскость, таким образом, параллельна плоскости линзы. Имея два фокуса, линза соответственно имеет и две фокальных плоскости, расположенных симметрично относительно линзы.

Точка P , в которой побочная оптическая ось пересекает фокальную плоскость, называется побочным фокусом. Собственно, каждая точка фокальной плоскости (кроме F) есть побочный фокус мы ведь всегда сможем провести побочную оптическую ось, соединив данную точку с оптическим центром линзы. А сама точка F фокус линзы в связи с этим называется ещё

главным фокусом.

То, что на рис. 4.27 изображена собирающая линза, никакой роли не играет. Понятия побочной оптической оси, фокальной плоскости и побочного фокуса совершенно аналогично определяются и для рассеивающей линзы с заменой на рис.4.27 собирающей линзы на рассеивающую.

Теперь мы переходим к рассмотрению хода лучей в тонких линзах. Мы будем предполагать, что лучи являются параксиальными, то есть образуют достаточно малые углы с главной оптической осью. Если параксиальные лучи исходят из одной точки, то после прохождения линзы преломлённые лучи или их продолжения также пересекаются в одной точке. Поэтому изображения предметов, даваемые линзой, в параксиальных лучах получаются весьма чёткими.

4.5.3 Ход луча через оптический центр

Как мы знаем из предыдущего раздела, луч, идущий вдоль главной оптической оси, не преломляется. В случае тонкой линзы оказывается, что луч, идущий вдоль побочной оптической оси, также не преломляется!

Объяснить это можно следующим образом. Вблизи оптического центра O обе поверхности линзы неотличимы от параллельных плоскостей, и луч в данном случае идёт как будто через плоскопараллельную стеклянную пластинку (рис. 4.28 ).

Рис. 4.28. Ход луча через оптический центр линзы

Угол преломления луча AB равен углу падения преломлённого луча BC на вторую поверхность. Поэтому второй преломлённый луч CD выходит из плоскопараллельной пластинки параллельно падающему лучу AB. Плоскопараллельная пластинка лишь смещает луч, не изменяя его направления, и это смещение тем меньше, чем меньше толщина пластинки.

Но для тонкой линзы мы можем считать, что эта толщина равна нулю. Тогда точки B, O и C фактически сольются в одну точку, и луч CD окажется просто продолжением луча AB. Вот поэтому и получается, что луч, идущий вдоль побочной оптической оси, не преломляется тонкой линзой (рис. 4.29 ).

Рис. 4.29. Луч, идущий через оптический центр тонкой линзы, не преломляется

Это единственное общее свойство собирающих и рассеивающих линз. В остальном ход лучей в них оказывается различным, и дальше нам придётся рассматривать собирающую и рассеивающую линзу по отдельности.

4.5.4 Ход лучей в собирающей линзе

Как мы помним, собирающая линза называется так потому, что световой пучок, параллельный главной оптической оси, после прохождения линзы собирается в её главном фокусе (рис. 4.30 ).

Рис. 4.31. Преломление пучка, идущего из главного фокуса

Оказывается, что пучок параллельных лучей, падающих на собирающую линзу наклонно, тоже соберётся в фокусе но в побочном. Этот побочный фокус P отвечает тому лучу, который проходит через оптический центр линзы и не преломляется (рис. 4.32 ).

Рис. 4.32. Параллельный пучок собирается в побочном фокусе

Теперь мы можем сформулировать правила хода лучей в собирающей линзе. Эти правила вытекают из рисунков 4.29 –4.32 .

1. Луч, идущий через оптический центр линзы, не преломляется.

Линзами называют прозрачные тела, ограниченные с двух сторон сферическими поверхностями.

Линзы бывают двух типов выпуклыми (собирающими) или вогнутыми (рассеивающими). У выпуклой линзы середина толще чем края, у вогнутой наоборот середина тоньше чем края.
Ось проходящая через центр линзы, перпендикулярная линзе, называется главной оптической осью.


Лучи идущие параллельно главной оптической оси преломляются проходя через линзу и собираются в одной точке, называемой точкой фокуса линзы или просто фокус линзы (для собирающей линзы). В случае рассеивающей линзы, лучи идущие параллельно главной оптической оси рассеиваются и расходятся в сторону от оси, но продолжения этих лучей пересекаются в одной точке, называемой точкой мнимого фокуса.


OF - фокусное расстояние линзы (OF=F просто обозначают буквой F).
Оптическая сила линзы - это величина, обратная ее фокусному расстоянию. , измеряется в диоптриях [дптр].
Например если фокусное расстояние линзы равно 20 см (F=20см=0,2м) то ее оптическая сила D=1/F=1/0,2=5 дптр
Для построения изображения с помощью линзы используют следующие правила:
- луч прошедший через центр линзы не преломляется;
- луч идущий параллельно главной оптической оси преломившись пройдет через точку фокуса;
- луч прошедший через точку фокуса после преломления пойдет параллельно главной оптической оси;

Рассмотрим классические случаи: а) предмет АВ находится за двойным фокусом d>2F.


изображение: действительное, уменьшенное, перевернутое.


изображение: мнимое, уменьшенное, прямое.

Б) предмет АВ находится между фокусом и двойным фокусом F

изображение: действительное, увеличеное, перевернутое.


В) предмет АВ находится между линзой и фокусом d

изображение: мнимое, увеличеное, прямое.


изображение: мнимое, уменьшеное, прямое.

Г) предмет АВ находится на двойном фокусе d=F


изображение: действительное, равное, перевернутое.



где F - фокусное расстояние линзы, d - расстояние от предмета до линзы, f - расстояние от линзы до изображения.


Г - увеличение линзы, h - высота предмета, H - высота изображения.

Задание огэ по физике: С помощью собирающей линзы получено мнимое изображение предмета. Предмет по отношению к линзе расположен на расстоянии
1)меньшем фокусного расстояния
2)равном фокусному расстоянию
3)большем двойного фокусного расстояния
4)большем фокусного и меньшем двойного фокусного расстояния
Решение: Мнимое изображение предмета с помощью собирающей линзы можно получить только в случае когда предмет по отношению к линзе расположен на расстоянии меньшем фокусного расстояния. (см рисунок выше)
Ответ: 1
Задание огэ по физике фипи: На рисунке изображён ход луча, падающего на тонкую линзу с фокусным расстоянием F. Ходу прошедшего через линзу луча соответствует пунктирная линия


Решение: Луч 1 проходит через фокус, значит до этого он шел параллельно главной оптической оси, луч 3 параллелен главной оптической оси, значит до этого он прошел через фокус линзы (слева от линзы), луч 2 находится между ними.
Ответ: 2
Задание огэ по физике фипи: Предмет находится от собирающей линзы на расстоянии, равном F. Каким будет изображение предмета?
1) прямым, действительным
2) прямым, мнимым
3) перевернутым, действительным
4) изображения не будет
Решение: луч прошедший через точку фокуса попав в линзу идет параллельно главной оптической оси, получить изображения предмета находящегося в точке фокуса невозможно.
Ответ: 4
Задание огэ по физике фипи: Школьник проводит опыты с двумя линзами, направляя на них параллельный пучок света. Ход лучей в этих опытах показан на рисунках. Согласно результатам этих опытов, фокусное расстояние линзы Л 2

1) больше фокусного расстояния линзы Л 1
2) меньше фокусного расстояния линзы Л 1
3) равно фокусному расстоянию линзы Л 1
4) не может быть соотнесено с фокусным расстоянием линзы Л 1
Решение: после прохождения через линзу Л 2 лучи идут параллельно, следовательно фокусы двух линз совпали, из рисунка видно, что фокусное расстояние линзы Л2 меньше фокусного расстояния линзы Л 1
Ответ: 2
Задание огэ по физике фипи: На рисунке изображены предмет S и его изображение S′, полученное с помощью

1) тонкой собирающей линзы, которая находится между предметом и его изображением
2) тонкой рассеивающей линзы, которая находится левее изображения
3) тонкой собирающей линзы, которая находится правее предмета
4) тонкой рассеивающей линзы, которая находится между предметом и его изображением
Решение: соеденив предмет S и его изображение S′ найдем где находится центр линзы, так как изображение S′ выше чем предмет S, значит изображение увеличенное. Собирающая линза дает увеличенное изображение S′. (см выше в теории)
Ответ: 3
Задание огэ по физике фипи: Предмет находится от собирающей линзы на расстоянии, меньшем 2F и большем F. Какими по сравнению с размерами предмета будут размеры изображения?
1) меньшими
2) такими же
3) большими
4) изображения не будет
Решение: Смотрите выше пункт б) предмет АВ находится между фокусом и двойным фокусом.
Ответ: 3
Задание огэ по физике фипи: После прохождения оптического прибора, закрытого на рисунке ширмой, ход лучей 1 и 2 изменился соответственно на 1" и 2". За ширмой находится

1) собирающая линза
2) рассеивающая линза
3) плоское зеркало
4) плоскопараллельная стеклянная пластина
Решение: лучи, после прохождения оптического прибора, расходятся, а это возможно только после прохождения лучей через рассеивающую линзу.
Ответ: 2
Задание огэ по физике фипи: На рисунке изображены оптическая ось ОО 1 тонкой линзы, предмет А и его изображение А 1 , а также ход двух лучей, участвующих в образовании изображения.

Согласно рисунку фокус линзы находится в точке
1) 1, причём линза является собирающей
2) 2, причём линза является собирающей
3) 1, причём линза является рассеивающей
4) 2, причём линза является рассеивающей
Решение: луч, идущий параллельно главной оптической оси, после прохождения сквозь линзу, преломляется и проходит через точку фокуса. На рисунке видно, что это точка 2 и линза собирающая.
Ответ: 2
Задание огэ по физике фипи: Ученик исследовал характер изображения предмета в двух стеклянных линзах: оптическая сила одной линзы D 1 = –5 дптр, другой D 2 = 8 дптр – и сделал определённые выводы. Из приведённых ниже выводов выберите два правильных и запишите их номера.
1) Обе линзы собирающие.
2) Радиус кривизны сферической поверхности первой линзы равен радиусу кривизны сферической поверхности второй линзы.
3) Фокусное расстояние первой линзы по модулю больше, чем второй.
4) Изображение предмета, созданное и той, и другой линзой, всегда прямое.
5) Изображение предмета, созданное первой линзой, всегда мнимое, изображение, а созданное второй линзой мнимое только в том случае, когда предмет находится между линзой и фокусом.
Решение: Знак минус показывает что первая линза рассеивающая, а вторая собирающая, следовательно изображение предмета, созданное первой линзой, всегда мнимое, изображение, а созданное второй линзой мнимое только в том случае, когда предмет находится между линзой и фокусом. Фокусное расстояние первой линзы по модулю больше, чем фокусное расстояние второй линзы. Из формулы для оптической силы линзы F=1/D, тогда F 1 =0,2 м. F 2 =0,125 м.
Ответ: 35
Задание огэ по физике фипи: В какой из точек будет находиться изображение точечного источника S, создаваемое собирающей линзой с фокусным расстоянием F?

1) 1
2) 2
3) 3
4) 4
Решение:

Ответ: 1
Задание огэ по физике фипи: Может ли двояковыпуклая линза рассеивать пучок параллельных лучей? Ответ поясните.
Решение: Может, если показатель преломления окружающей среды будет больше показателя преломления линзы.
Задание огэ по физике фипи: На рисунке изображены тонкая рассеивающая линза и три предмета: А, Б и В, расположенные на оптической оси линзы. Изображение какого(-их) предмета(-ов) в линзе, фокусное расстояние которой F, будет уменьшенным, прямым и мнимым?

1) только А
2) только Б
3) только В
4) всех трёх предметов
Решение: Тонкая рассеивающая линза, всегда дает уменьшенное, прямое и мнимое изображение, при любом расположении предмета.
Ответ: 4
Задание огэ по физике (фипи): Предмет, находящийся между фокусным и двойным фокусным расстоянием линзы, переместили ближе к двойному фокусу линзы. Установите соответствие между физическими величинами и их возможными изменениями при приближении предмета к двойному фокусу линзы.
Для каждой величины определите соответствующий характер изменения:
1) увеличивается
2) уменьшается
3) не изменяется
Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
Решение: Если предмет находится между фокусом и двойным фокусом то его изображение увеличиное и находится за двойным фокусом, при приближении к двойному фокусу размеры будут уменьшаться и изображение станет ближе к линзе, так как, если тело находится на двойном фокусном расстоянии то изображение равно самому себе и находится на двойном фокусе.
Ответ: 22
Задание демонстрационного варианта ОГЭ 2019: На рисунке изображены три предмета: А, Б и В. Изображение какого(-их) предмета(-ов) в тонкой собирающей линзе, фокусное расстояние которой F, будет уменьшенным, перевёрнутым и действительным?

1) только А
2) только Б
3) только В
4) всех трёх предметов
Решение: Изображение будет уменьшенным, перевёрнутым и действительным если предмет находится за двойным фокусом d>2F (см. теорию выше). Предмет А находится за двойным фокусом.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло