Что такое ток: основные характеристики и понятия. Что такое электрический ток? Условия существования электрического тока: характеристики и действия

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током . За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q , переносимого через поперечное сечение проводника за интервал времени t , к этому интервалу времени:

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным . Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Если же ток равномерно меняется с течением времени от значения I 1 до значения I 2 , то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

где: R 0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

Закон Ома. Последовательное и параллельное соединение проводников

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I , текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R , пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением . Проводник, обладающий электрическим сопротивлением, называется резистором . Это соотношение выражает закон Ома для однородного участка цепи : сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными . Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно . У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R , то общее сопротивление R 0 находится по формуле:

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R , то общее сопротивление R 0 находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры .

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением R B . Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением R A . В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

ЭДС. Закон Ома для полной цепи

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока . Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы A ст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС) :

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника ):

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания :

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r . У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно , то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

Работа и мощность тока. Закон Джоуля-Ленца

Работа A электрического тока I , протекающего по неподвижному проводнику с сопротивлением R , преобразуется в теплоту Q , выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца . Мощность электрического тока равна отношению работы тока A к интервалу времени Δt , за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

Энергобаланс замкнутой цепи

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R . В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R 1 и R 2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

Электролиз

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза .

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду ), отрицательные ионы – к положительному электроду (аноду ). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией .

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q , прошедшему через электролит:

Величину k называют электрохимическим эквивалентом . Он может быть рассчитан по формуле:

где: n – валентность вещества, N A – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

Электрический ток в газах и в вакууме

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов - электроны и положительные ионы. Этот процесс называется ионизацией газов .

Ионизировать молекулы газа можно внешним воздействием - ионизатором . Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α -частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов - электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Электрический ток


К атегория:

Крановщикам и стропальщикам

Электрический ток


Что называется электрическим током?

Упорядоченное (направленное) движение заряженных частиц называется электрическим током. Причем электрический ток, сила которого со временем не меняется, называется постоянным. Если же направление движения тока меняется и изменения. по величине и направлению повторяются в одной и той же последовательности, то такой ток называется переменным.

Что вызывает и поддерживает упорядоченное движение заряженных частиц?

Вызывает и поддерживает упорядоченное движение заряженных частиц электрическое поле. Имеет ли электрический ток определенное направление?
Имеет. За направление электрического тока принимают движение положительно заряженных частиц.

Можно ли непосредственно наблюдать движение заряженных частиц в проводнике?

Нет. Но о наличии электрического тока можно судить по тем действиям и явлениям, которыми он сопровождается. Например, проводник, по которому движутся заряженные частицы, нагревается, а в пространстве, окружающем проводник, образуется магнитное поле и магнитная стрелка вблизи проводника с электрическим током поворачивается. Кроме того, ток, проходящий через газы, вызывает их свечение, а проходя через растворы солей, щелочей и кислот, разлагает их на соетавнйе части.

Чем определяется сила электрического тока?

Сила электрического тока определяется количеством электричества, проходящим через поперечное сечение проводника в единицу времени.
Чтобы определить силу тока в цепи, надо количество протекающего электричества разделить на время, за которое оно протекло.

Что принято за единицу силы тока?

За единицу силы тока принята сила неизменяющегося тока, который, проходя по двум параллельны прямолинейным проводникам бесконечной длины ни тожно малого сечения, расположенным на рассто нии 1 м один от другого в вакууме, вызвал бы межд этими проводниками силу, равную 2 Ньютона н каждый метр. Эту единицу назвали Ампером в чест французского ученого Ампера.

Что принято за единицу количества электричества?

За единицу количества электричества принят Кулон (Ку), который проходит в одну секунду при силе тока в 1 Ампер (А).

Какими приборами измеряют силу электрического тока?

Силу электрического тока измеряют приборами, называемыми амперметрами. Шкалу амперметра градуируют в амперах и долях ампера по показаниям точных образцовых приборов. Силу тока отсчитывают по показаниям стрелки, которая перемещается вдоль шкалы от нулевого деления. Амперметр в электрическую цепь включают последовательно, с помощью двух клемм или зажимов, имеющихся на приборе. Что такое напряжение электрического тока?
Напряжение электрического тока есть разность потенциалов между двумя точками электрического поля. Оно равно работе, совершаемой-силами электрического поля при перемещении положительного заряда, равного единице, из одной точки поля в другую.

Основной единицей измерения напряжения является Вольт (В).

Каким прибором измеряют напряжение электрического тока?

Напряжение электрического тока измеряют прибо; ром, который называется вольтметром. В цепь электрического тока вольтметр включают параллельно. Сформулируйте закон Ома на участке цепи.

Что такое сопротивление проводника?

Сопротивление проводника есть физическая величина, характеризующая свойства проводника. Единицей сопротивления является Ом. Причем сопротивление в 1 Ом имеет провод, в котором устанавливается ток 1 А при напряжении на его концах 1 В.

Зависит ли сопротивление в проводниках от величины протекающего по ним электрического тока?

Сопротивление однородного металлического проводника определенной длины и сечения не зависит от величины протекающего по нему тока.

От чего зависит сопротивление в проводниках электрического тока?

Сопротивление в проводниках электрического тока зависит от длины проводника, площади его поперечного сечения и рода материала проводника (удельного сопротивления материала).

Причем сопротивление прямо пропорционально длине проводника, обратно пропорционально площади поперечного сечения и зависит, как было сказано выше, от материала проводника.

Зависит ли сопротивление в проводниках от температуры?

Да, зависит. Повышение температуры металлического проводника вызывает увеличение скорости теплового движения частиц. Это приводит к увеличению числа столкновений свободных электронов и, следовательно, к уменьшению времени свободного пробега, вследствие чего уменьшается удельная проводимость и увеличивается удельное сопротивление материала.

Температурный коэффициент сопротивления чистых металлов равен приблизительно 0,004 °С, что означает увеличение их сопротивления на 4% при повышении температуры на 10 °С.

При повышении температуры в электролита угле время свободного пробега тоже уменьшается, при этом увеличивается концентрация носителей з дов, вследствие чего удельное сопротивление их повышении температуры уменьшается.

Сформулируйте закон Ома для замкнутой цепи.

Сила тока в замкнутой цепи равна отноше электродвижущей силы цепи к ее полному сопроти нию.

Эта формула показывает, что сила тока зависит трех величин: электродвижущей силы Е, внешнег сопротивления R и внутреннего сопротивления г Внутреннее сопротивление не оказывает заметног влияния на силу тока, если оно мало по сравнению внешним сопротивлением. При этом напряже ние на зажимах источника тока приблизительно равн электродвижущей силе (ЭДС).

Что представляет собой электродвижущая сила (ЭДС)?

Электродвижущая сила представляет собой отношение работы сторонних сил по перемещению заряда вдоль цепи к заряду. Как и разность потенциалов, электродвижущую силу измеряют в вольтах.

Какие силы называются сторонними силами?

Любые силы, действующие на электрически заряженные частицы, за исключением потенциальных сил электростатического происхождения (т. е. кулонов- ских), называются сторонними силами. Именно за счет работы этих сил заряженные частицы приобретают энергию и отдают ее затем при движении в проводниках электрической цепи.

Сторонние силы приводят в движение заряженные частицы внутри источника тока, генератора, аккумулятора и т. д.

В результате на клеммах источника тока появляются заряды противоположного знака, а между клеммами-определенная разность потенциалов. Далее при замыкании цепи начинает действовать образование поверхностных зарядов, создающих электрическое поле по всей цепи, которое появляется в результате того, что при замыкании цепи почти сразу же на всей поверхности проводника возникает поверхностный заряд. Внутри источника заряды движутся под действием сторонних сил против сил электростатического поля (положительные от минуса, к плюсу), а по всей остальной цепи их приводит в движение электрическое поле.

Рис. 1. Электрическая цепь: 1- источник, электроэнергии (аккумулятор); 2 - амперметр; 3 - преемник энергии (лай па накаливания); 4 - электрические провода; 5 - однополюсные руСидьник; 6 - плавкие предохранители

Без электричества невозможно представить жизнь современного человека. Вольты, Амперы, Ватты – эти слова звучат в разговоре об устройствах, которые работают от электричества. Но что это такое электрический ток и каковы условия его существования? Об этом мы расскажем далее, предоставив краткое объяснение для начинающих электриков.

Определение

Электрическим током является направленное движение носителей зарядов – это стандартная формулировка из учебника физики. В свою очередь носителями заряда называются определенные частицы вещества. Ими могут быть:

  • Электроны – отрицательные носители заряда.
  • Ионы – положительные носители заряда.

Но откуда берутся носители заряда? Для ответа на этот вопрос нужно вспомнить базовые знания о строении вещества. Всё что нас окружает – вещество, оно состоит из молекул, мельчайших его частиц. Молекулы состоят из атомов. Атом состоит из ядра, вокруг которого движутся электроны на заданных орбитах. Молекулы также хаотично движутся. Движение и структура каждой из этих частиц зависят от самого вещества и влияния на него окружающей среды, например температуры, напряжения и прочего.

Ионом называют атом, у которого изменилось соотношение электронов и протонов. Если изначально атом нейтрален, то ионы в свою очередь делят на:

  • Анионы – положительный ион атома, потерявшего электроны.
  • Катионы – это атом с «лишними» электронами, присоединившиеся к атому.

Единица измерения тока – Ампер, согласно он вычисляется по формуле:

где U – напряжение, [В], а R – сопротивление, [Ом].

Или прямопропорционален количеству заряда, перенесенному за единицу времени:

где Q – заряд, [Кл], t – время, [с].

Условия существования электрического тока

Что такое электрический ток мы разобрались, теперь давайте поговорим о том, как обеспечить его протекание. Для протекания электрического тока необходимо выполнение двух условий:

  1. Наличие свободных носителей заряда.
  2. Электрическое поле.

Первое условие существования и протекания электричества зависит от вещества, в котором протекает (или не протекает) ток, а также его состояния. Второе условие также выполнимо: для существования электрического поля обязательно наличие разных потенциалов, между которыми находится среда, в которой будут протекать носители заряда.

Напомним: Напряжение, ЭДС – это разность потенциалов. Отсюда следует, что для выполнения условий существования тока – наличия электрического поля и электрического тока, нужно напряжение. Это могут быть обкладки заряженного конденсатора, гальванический элемент, ЭДС возникшее под действием магнитного поля (генератор).

Как он возникает, мы разобрались, давайте поговорим о том, куда он направлен. Ток, в основном, в привычном для нас использовании, движется в проводниках (электропроводка в квартире, лампочки накаливания) или в полупроводниках (светодиоды, процессор вашего смартфона и другая электроника), реже в газах (люминесцентные лампы).

Так вот основными носителями заряда в большинстве случаев являются электроны, они движутся от минуса (точки с отрицательным потенциалом) к плюсу (точке с положительным потенциалом, подробнее об этом вы узнаете ниже).

Но интересен тот факт, что за направление движения тока было принято движение положительных зарядов – от плюса к минусу. Хотя фактически всё происходит наоборот. Дело в том, что решение о направлении тока было принято до изучения его природы, а также до того, как было определено за счет чего протекает и существует ток.

Электрический ток в разных средах

Мы уже упоминали о том, что в различных средах электрический ток может различаться по типу носителей заряда. Среды можно разделить по характеру проводимости (по убыванию проводимости):

  1. Проводник (металлы).
  2. Полупроводник (кремний, германий, арсенид галия и пр).
  3. Диэлектрик (вакуум, воздух, дистиллированная вода).

В металлах

В металлах есть свободные носители зарядов, их иногда называют «электрическим газом». Откуда берутся свободные носители зарядов? Дело в том, что металл, как и любое вещество, состоит из атомов. Атомы, так или иначе движутся или колеблются. Чем выше температура металла, тем сильнее это движение. При этом сами атомы в общем виде остаются на своих местах, собственно и формируя структуру металла.

В электронных оболочках атома обычно есть несколько электронов, у которых связь с ядром достаточно слабая. Под воздействием температур, химических реакций и взаимодействия примесей, которые в любом случае находятся в металле, электроны отрываются от своих атомов, образуются положительно заряженные ионы. Оторвавшиеся электроны называются свободными и двигаются хаотично.

Если на них будет воздействовать электрическое поле, например, если подключить к куску металла батарейку – хаотичное движение электронов станет упорядоченным. Электроны от точки, в которую подключен отрицательный потенциал (катод гальванического элемента, например), начнут двигаться к точке с положительным потенциалом.

В полупроводниках

Полупроводниками являются такие материалы, в которых в нормальном состоянии нет свободных носителей заряда. Они находятся в так называемой запрещенной зоне. Но если приложить внешние силы, такие как электрическое поле, тепло, различные излучения (световое, радиационное и пр.), они преодолевают запрещенную зону и переходят в свободную зону или зону проводимости. Электроны отрываются от своих атомов и становятся свободными, образуя ионы – положительные носители зарядов.

Положительные носители в полупроводниках называются дырками.

Если просто передать энергию полупроводнику, к примеру нагреть, начнется хаотичное движение носителей заряда. Но если речь идет о полупроводниковых элементах, типа диода или транзистора, то на противоположных концах кристалла (на них нанесен металлизированный слой и припаяны выводы) возникнет ЭДС, но это не относится к теме сегодняшней статьи.

Если приложить источник ЭДС к полупроводнику, то носители заряда также перейдут в зону проводимости, а также начнется их направленное движение – дырки пойдут в сторону с меньшим электрическим потенциалом, а электроны – в сторону с большим.

В вакууме и газе

Вакуумом называют среду с полным (идеальный случай) отсутствием газов или минимизированным (в реальности) его количеством. Так как в вакууме нет никакого вещества, то и носителям заряда браться не откуда. Однако протекание тока в вакууме положило начало электронике и целой эпохе электронных элементов – электровакуумных ламп. Их использовали в первой половине прошлого века, а в 50-х годах они начали постепенно уступать месту транзисторам (в зависимости от конкретной сферы электроники).

Допустим, что у нас есть сосуд, из которого откачали весь газ, т.е. в нём полный вакуум. В сосуд помещено два электрода, назовем их анод и катод. Если мы подключим к катоду отрицательный потенциал источника ЭДС, а к аноду положительный – ничего не произойдет и ток протекать не будет. Но если мы начнем нагревать катод – ток начнет протекать. Этот процесс называется термоэлектронной эмиссией – испускание электронов с нагретой поверхности электрона.

На рисунке изображен процесс протекания тока в вакуумной лампе. В вакуумных лампах катод нагревают расположенной рядом нитью накала на рис (Н), типа такой, как в осветительной лампе.

При этом, если изменить полярность питания – на анод подать минус, а на катод подать плюс – ток протекать не будет. Это докажет, что ток в вакууме протекает за счет движения электронов от КАТОДА к АНОДУ.

Газ также как и любое вещество состоит из молекул и атомов, это значит, что если газ будет находиться под воздействием электрического поля, то при определенной его силе (напряжение ионизации) электроны оторвутся от атома, тогда будут выполнены оба условия протекания электрического тока – поле и свободные носители.

Как уже было сказано, этот процесс называется ионизацией. Она может происходить не только от приложенного напряжения, но и при нагреве газа, рентгеновском излучении, под воздействием ультрафиолета и прочего.

Ток через воздух потечет, даже если между электродами установить горелку.

Протекание тока в инертных газах сопровождается люминесценцией газа, это явление активно используется в люминесцентных лампах. Протекание электрического тока в газовой среде называется газовым разрядом.

В жидкости

Допустим, что у нас есть сосуд с водой в который помещены два электрода, к которым подключен источник питания. Если вода дистиллированная, то есть чистая и не содержит примесей, то она является диэлектриком. Но если мы добавим в воду немного соли, серной кислоты или любого другого вещества, образуется электролит и через него начнет протекать ток.

Электролит – вещество, которое проводит электрический ток вследствие диссоциации на ионы.

Если в воду добавить медный купорос, то на одном из электродов (катоде) осядет слой меди – это называется электролиз, что доказывает что электрический ток в жидкости осуществляется за счет движения ионов – положительных и отрицательных носителей заряда.

Электролиз – физико-химический процесс, который заключается в выделении на электродах компонентов составляющих электролит.

Таким образом происходит омеднение, золочения и покрытие другими металлами.

Заключение

Подведем итоги, для протекания электрического тока нужны свободные носители зарядов:

  • электроны в проводниках (металлы) и вакууме;
  • электроны и дырки в полупроводниках;
  • ионы (анионы и катионы) в жидкости и газах.

Для того, чтобы движение этих носителей стало упорядоченны, нужно электрическое поле. Простыми словами — приложить напряжение на концах тела или установить два электрода в среде, где предполагается протекание электрического тока.

Также стоит отметить, что ток определенным образом воздействует на вещество, различают три типа воздействия:

  • тепловое;
  • химическое;
  • физическое.

Полезное

Что называют силой тока? Такой вопрос не раз и не два возникал у нас в процессе обсуждения различных вопросов. Поэтому мы решили разобраться с ним более подробно, и постараемся сделать это максимально доступным языком без огромного количества формул и непонятных терминов.

Итак, что называется электрическим током? Это направленный поток заряженных частиц. Но что это за частицы, с чего это вдруг они двигаются, и куда? Это все не очень понятно. Поэтому давайте разберемся в этом вопросе подробнее.

  • Начнем с вопроса про заряженные частицы, которые, по сути, являются носителями электрического тока . В разных веществах они разные. Например, что представляет собой электрический ток в металлах? Это электроны. В газах — электроны и ионы; в полупроводниках – дырки; а в электролитах — это катионы и анионы.

  • Эти частицы имеют определенный заряд. Он может быть положительным или отрицательным. Определение положительного и отрицательного заряда дано условно. Частицы, имеющие одинаковый заряд, отталкиваются, а разноименный — притягиваются.

  • Исходя из этого, получается логичным, что движение будет происходить от положительного полюса к отрицательному. И чем большее количество заряженных частиц имеется на одном заряженном полюсе, тем большее их количество будет перемещаться к полюсу с другим знаком.
  • Но все это глубокая теория, поэтому давайте возьмем конкретный пример. Допустим, у нас имеется розетка, к которой не подключено ни одного прибора. Есть ли там ток?
  • Для ответа на этот вопрос нам необходимо знать, что такое напряжение и ток. Дабы это было понятнее, давайте разберем это на примере трубы с водой. Если говорить упрощенно, то труба - это наш провод. Сечение этой трубы - это напряжение электрической сети, а скорость потока — это и есть наш электрический ток.
  • Возвращаемся к нашей розетке. Если проводить аналогию с трубой, то розетка без подключенных к ней электроприборов, это труба, закрытая вентилем. То есть электрического тока там нет.

  • Но зато там есть напряжение. И если в трубе, для того чтоб появился поток, необходимо открыть вентиль, то чтобы создать электрический ток в проводнике, надо подключить нагрузку. Сделать это можно путем включения вилки в розетку.
  • Конечно, это весьма упрощенное представление вопроса, и некоторые профессионалы будут меня хаять и указывать на неточности. Но оно дает представление о том, что называют электрическим током.

Постоянный и переменный ток

Следующим вопросом, в котором мы предлагаем разобраться – это: что такое переменный ток и постоянный ток. Ведь многие не совсем правильно понимают эти понятия.

Постоянным называется ток, который в течение времени не изменяет своей величине и направлению. Достаточно часто к постоянному еще относят пульсирующий ток, но давайте обо всем по порядку.

  • Постоянный ток характеризуется тем, что одинаковое количество электрических зарядов постоянно сменяет друг друга в одном направлении. Направление — это от одного полюса, к другому.
  • Получается, что проводник всегда имеет либо положительный, либо отрицательный заряд. И в течение времени это неизменно.

Обратите внимание! При определении направления постоянного тока, могут быть несогласности. Если ток образуется движением положительно заряженных частиц, то его направление соответствует движению частиц. Если же ток образован движением отрицательно заряженных частиц, то его направление принято считать противоположным движению частиц.

  • Но под понятие, что такое постоянный ток достаточно часто относят и так называемый пульсирующий ток. От постоянного он отличается только тем, что его значение в течение времени изменяется, но при этом он не меняет своего знака.
  • Допустим, мы имеем ток в 5А. Для постоянного тока эта величина будет неизменной в течении всего периода времени. Для пульсирующего тока, в один отрезок времени она будет 5, в другой 4, а в третий 4,5. Но при этом он ни в коем случае не снижается ниже нуля, и не меняет своего знака.

  • Такой пульсирующий ток очень распространен при преобразовании переменного тока в постоянный. Именно такой пульсирующий ток выдает ваш инвертор или диодный мост в электронике.
  • Одним из главных преимуществ постоянного тока является то, что его можно накапливать. Сделать это можно своими руками, при помощи аккумуляторных батарей или конденсаторов.

Переменный ток

Чтобы понять, что такое переменный ток, нам необходимо представить себе синусоиду. Именно эта плоская кривая лучше всего характеризует изменение постоянного тока, и является стандартом.

Как и синусоида, переменный ток с постоянной частотой меняет свою полярность. В один период времени он положительный, а в другой период времени он отрицательный.

Поэтому, непосредственно в проводнике передвижения, носителей заряда, как такового, нет. Дабы понять это, представьте себе волну, набегающую на берег. Она движется в одну сторону, а затем — в обратную. В итоге, вода вроде движется, но остается на месте.

Исходя из этого, для переменного тока очень важным фактором становится его скорость изменения полярности. Этот фактор называют частотой.

Чем выше эта частота, тем чаще за секунду меняется полярность переменного тока. В нашей стране для этого значения есть стандарт – он равен 50Гц.

То есть, переменный ток меняет свое значение от крайнего положительного, до крайнего отрицательного 50 раз в секунду.

Но существует не только переменный ток частотой в 50Гц. Многое оборудование работает на переменном токе отличных частот.

Ведь за счет изменения частоты переменного тока, можно изменять скорость вращения двигателей.

Можно так же получать более высокие показатели обработки данных – как например в чипсетах ваших компьютеров, и многое другое.

Обратите внимание! Наглядно увидеть, что такое переменный и постоянный ток, можно на примере обычной лампочки. Особенно хорошо это видно на некачественных диодных лампах, но присмотревшись, можно увидеть и на обычной лампе накаливания. При работе на постоянном токе они горят ровным светом, а при работе на переменном токе едва заметно мерцают.

Что такое мощность и плотность тока?

Ну вот, мы выяснили, что такое ток постоянный, а что такое переменный. Но у вас наверняка осталось еще масса вопросов. Их-то мы и постараемся рассмотреть в этом разделе нашей статьи.

Из этого видео Вы подробнее сможете узнать о том, что же такое мощность.

  • И первым из этих вопросов будет: что такое напряжение электрического тока? Напряжением называется разность потенциалов между двумя точками.

  • Сразу возникает вопрос, а что такое потенциал? Сейчас меня вновь будут хаять профессионалы, но скажем так: это избыток заряженных частиц. То есть, имеется одна точка, в которой избыток заряженных частиц — и есть вторая точка, где этих заряженных частиц или больше, или меньше. Вот эта разница и называется напряжением. Измеряется она в вольтах (В).

  • В качестве примера возьмем обычную розетку. Все вы наверняка знаете, что ее напряжение составляет 220В. В розетке у нас имеется два провода, и напряжение в 220В обозначает, что потенциал одного провода больше чем потенциал второго провода как раз на эти 220В.
  • Понимание понятия напряжения нам необходимо для того, чтоб понять, что такое мощность электрического тока. Хотя с профессиональной точки зрения, это высказывание не совсем верное. Электрический ток не обладает мощностью, но является ее производной.

  • Дабы понять этот момент, давайте вновь вернемся к нашей аналогии с водяной трубой. Как вы помните сечение этой трубы - это напряжение, а скорость потока в трубе - это ток. Так вот: мощность — это то количество воды, которое протекает через эту трубу.
  • Логично предположить, что при равных сечениях, то есть напряжениях — чем сильнее поток, то есть электрический ток, тем больший поток воды переместиться через трубу. Соответственно, тем большая мощность передастся потребителю.
  • Но если в аналогии с водой мы через трубу определенного сечения можем передать строго определенное количество воды, так как вода не сжимается, то с электрическим током все не так. Через любой проводник мы теоретически можем передать любой ток. Но практически, проводник небольшого сечения при высокой плотности тока просто перегорит.
  • В связи с этим, нам необходимо разобраться с тем, что такое плотность тока. Грубо говоря — это то количество электронов, которое перемещается через определенное сечение проводника за единицу времени.
  • Это число должно быть оптимальным. Ведь если мы возьмем проводник большого сечения, и будем передавать через него небольшой ток, то цена такой электроустановки будет велика. В то же время, если мы возьмем проводник небольшого сечения, то из-за высокой плотности тока он будет перегреваться и быстро перегорит.
  • В связи с этим, в ПУЭ есть соответствующий раздел, который позволяет выбрать проводники исходя из экономической плотности тока.

  • Но вернемся к понятию, что такое мощность тока? Как мы поняли по нашей аналогии, при одинаковом сечении трубы передаваемая мощность зависит только от силы тока. Но если сечение нашей трубы увеличить, то есть увеличить напряжение, в этом случае, при одинаковых значениях скорости потока, будут передаваться совершенно разные объемы воды. То же самое и в электрике.
  • Чем выше напряжение, тем меньший ток необходим для передачи одинаковой мощности. Именно поэтому, для передачи на большие расстояния больших мощностей используют высоковольтные линии электропередач.

Ведь линия сечением провода в 120 мм 2 на напряжение в 330кВ, способна передать в разы большую мощность в сравнении с линией такого же сечения, но напряжением в 35кВ. Хотя то, что называется силой тока, в них будет одинаковой.

Способы передачи электрического тока

Что такое ток и напряжение мы разобрались. Пришла пора разобраться со способами распределения электрического тока. Это позволит в дальнейшем более уверено чувствовать себя в общении с электроприборами.

Как мы уже говорили, ток может быть переменным и постоянным. В промышленности, и у вас в розетках используется переменный ток. Он более распространен, так как его легче передавать по проводам. Дело в том, что изменять напряжение постоянного тока достаточно сложно и дорогостояще, а изменять напряжение переменного тока можно при помощи обыкновенных трансформаторов.

Обратите внимание! Ни один трансформатор переменного тока не будет работать на постоянном токе. Так как свойства, которые он использует, присущи только переменному току.

  • Но это совсем не обозначает, что постоянный ток нигде не используется. Он обладает другим полезным свойством, которое не присуще переменному. Его можно накапливать и хранить.
  • В связи с этим, постоянный ток используют во всех портативных электроприборах, в железнодорожном транспорте, а также на некоторых промышленных объектах где необходимо сохранить работоспособность даже после полного прекращения электроснабжения.

  • Самым распространенным способом хранения электрической энергии, являются аккумуляторные батареи. Они обладают специальными химическими свойствами, позволяющими накапливать, а затем при необходимости отдавать постоянный ток.
  • Каждый аккумулятор обладает строго ограниченным объемом накапливаемой энергии. Ее называют емкостью батареи, и отчасти она определяется пусковым током аккумулятора.
  • Что такое пусковой ток аккумулятора? Это то количество энергии, которое аккумулятор способен отдать в самый первоначальный момент подключения нагрузки. Дело в том, что в зависимости от физико-химических свойств, аккумуляторы отличаются по способу отдачи накопленной энергии.

  • Одни могут отдать сразу и много. Из-за этого они, понятное дело, быстро разрядятся. А вторые отдают долго, но по чуть-чуть. Кроме того, важным аспектом аккумулятора является возможность поддержания напряжения.
  • Дело в том, что как говорит инструкция, у одних аккумуляторов по мере отдачи емкости, плавно снижается и их напряжение. А другие аккумуляторы способны отдать практически всю емкость с одинаковым напряжением. Исходя из этих основных свойств, и выбирают эти хранилища для электроэнергии.
  • Для передачи постоянного тока, во всех случаях используется два провода. Это положительная и отрицательная жила. Красного и синего цвета.

Переменный ток

А вот с переменным током все намного сложнее. Он может передаваться по одному, двум, трем или четырем проводам. Чтоб объяснить это, нам необходимо разобраться с вопросом: что такое трехфазный ток?

  • Переменный ток у нас вырабатывается генератором. Обычно почти все их них имеют трёхфазную структуру. Это значит, что генератор имеет три вывода и в каждый из этих выводов выдается электрический ток, отличающийся от предыдущих на угол в 120⁰.
  • Дабы это понять, давайте вспомним нашу синусоиду, которая является образцом для описания переменного тока, и согласно законам которой он изменяется. Возьмем три фазы – «А», «В» и «С», и возьмем определенную точку во времени. В этой точке синусоида фазы «А» находится в нулевой точке, синусоида фазы «В» находится в крайней положительной точке, а синусоида фазы «С» — в крайней отрицательной точке.
  • Каждую последующую единицу времени переменный ток в этих фазах будет изменяться, но синхронно. То есть, через определенное время, в фазе «А» будет отрицательный максимум. В фазе «В» будет ноль, а в фазе «С» — положительный максимум. А еще через некоторое время, они вновь сменятся.

  • В итоге получается, что каждая из этих фаз имеет собственный потенциал, отличный от потенциала соседней фазы. Поэтому между ними обязательно должно быть что-то, что не проводит электрический ток.
  • Такая разность потенциалов между двумя фазами называется линейным напряжением. Кроме того, они имеют разность потенциалов относительно земли – это напряжение называется фазным.
  • И вот, если линейное напряжение между этими фазами составляет 380В, то фазное напряжение равно 220В. Оно отличается на значение в √3. Это правило действует всегда и для любых напряжений.

  • Исходя из этого, если нам необходимо напряжение в 220В, то можно взять один фазный провод, и провод, жестко подключенный к земле. И у нас получится однофазная сеть 220В. Если нам необходима сеть 380В, то мы можем взять только 2 любые фазы, и подключить какой-то нагревательный прибор как на видео.

Но в большинстве случаев, используются все три фазы. Все мощные потребители подключаются именно к трехфазной сети.

Вывод

Что такое индукционный ток, емкостной ток, пусковой ток, ток холостого хода, токи обратной последовательности, блуждающие токи и многое другое, мы просто не можем рассмотреть в рамках одной статьи.

Ведь вопрос электрического тока достаточно объемен, и для его рассмотрения создана целая наука электротехника. Но мы очень надеемся, что смогли объяснить доступным языком основные аспекты данного вопроса, и теперь электрический ток не будет для вас чем-то страшным и непонятным.

Электрическим током называется упорядоченное движение заряженных частиц.

2. При каких условиях возникает электрический ток?

Электрический ток возникает, если имеются свободные заряды, а так же в результате действия внешнего электрического поля. Для получения электрического поля достаточно создать разность потенциалов между какими-то двумя точками проводника.

3. Почему движение заряженных частиц в проводнике в отсутствие внешнего электрического поля является хаотическим?

Если отсутствует внешнее электрическое поле, то отсутствует и дополнительная составляющая скорости направленная вдоль напряженности электрического поля, а значит, все направления движения частиц равноправны.

4. Чем отличается движение заряженных частиц в проводнике в отсутствие и при наличии внешнего электрического поля?

В отсутствии электрического поля движение заряженных частиц хаотично, а при его наличии - движение частиц это результат хаотичного и поступательного движений.

5. Как выбирается направление электрического тока? В каком направлении движутся электроны в металлическом проводнике, по которому протекает электрический ток?

За направление электрического тока принято направление движения положительно заряженных частиц. В металлическом проводнике электроны движутся в сторону, противоположную направлению тока.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло