Эндоплазматическая сеть: строение и функции. Щелевидное соединение (нексус)

Строение и функции эндоплазматической сети связаны с синтезом органических веществ (белков, жиров и углеводов) и их транспортом внутри клетки. Представляет собой мембранный органоид клетки, занимающий существенную ее часть и выглядящий как система трубочек, канальцев и т. п., ответвляющихся (берущих свое начало) от оболочки ядра, точнее от ее внешней мембраны.

Кроме термина "эндоплазматическая сеть" используется термин "эндоплазматический ретикулум". Это одно и то же, "reticulum" с английского переводится как "сеть". В литературе можно встретить следующие сокращенные обозначения данной клеточной структуры: ЭПС, ЭПР, ЭС, ЭР.

Если взять какой-либо участок эндоплазматической сети, то по своему строению он будет представлять ограниченное мембраной внутреннее пространство (полость, канал). При этом канал несколько уплощен, в разных участках ЭПС в разной степени. По своему химическому строению мембраны ЭПС близки к мембране оболочки ядра.

Различают гладкую и шероховатую эндоплазматическую сеть . Шероховатая отличается тем, что на ее мембранах с внешней стороны прикрепляются рибосомы, а ее каналы имеют большее уплощение.

Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы.

Различают две разновидности эндоплазматической сети:

    зернистая (гранулярная или шероховатая);

    незернистая или гладкая.

На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Следует помнить, что названные две разновидности являются не самостоятельными формами эндоплазматической сети, так как можно проследить переход зернистой эндоплазматической сети в гладкую и наоборот.

Функции зернистой эндоплазматической сети:

    синтез белков, предназначенных для выведения из клетки ("на экспорт");

    отделение (сегрегация) синтезированного продукта от гиалоплазмы;

    конденсация и модификация синтезированного белка;

    транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;

    синтез билипидных мембран.

Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.

Функции гладкой эндоплазматической сети:

    участие в синтезе гликогена;

    синтез липидов;

    дезинтоксикационная функция — нейтрализация токсических веществ, посредством соединения их с другими веществами.

Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы — диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом, в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена.

В диктиосоме различают два полюса:

    цис-полюс — направлен основанием к ядру;

    транс-полюс — направлен в сторону цитолеммы.

Установлено, что к цис-полюсу подходят транспортные вакуоли, несущие в пластинчатый комплекс продукты, синтезированные в зернистой эндоплазматической сети. От транс-полюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его выведения из клетки. Однако часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.

Функции пластинчатого комплекса:

    транспортная — выводит из клетки синтезированные в ней продукты;

    конденсация и модификация веществ, синтезированных в зернистой эндоплазматической сети;

    образование лизосом (совместно с зернистой эндоплазматической сетью);

    участие в обмене углеводов;

    синтез молекул, образующих гликокаликс цитолеммы;

    синтез, накопление и выведение муцина (слизи);

    модификация мембран, синтезированных в эндоплазматической сети и превращение их в мембраны плазмолеммы.

Среди многочисленных функций пластинчатого комплекса на первое место ставят транспортную функцию. Именно поэтому его нередко называют транспортным аппаратом клетки.

Лизосомы наиболее мелкие органеллы цитоплазмы (0,2-0,4 мкм) и поэтому открытые (де Дюв, 1949 г.) только с использованием электронного микроскопа. Представляют собой тельца, ограниченные липидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (50 гидролаз), способных расщеплять любые полимерные соединения (белки, липиды, углеводы и их комплексы) на мономерные фрагменты. Маркерным ферментом лизосом является кислая фосфатаза.

Функция лизосом — обеспечение внутриклеточного пищеварения, то есть расщепления как экзогенных, так и эндогенных веществ.

Классификация лизосом:

    первичные лизосомы — электронноплотные тельца;

    вторичные лизосомы — фаголизосомы, в том числе аутофаголизосомы;

    третичные лизосомы или остаточные тельца.

Истинными лизосомами являются мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе.

Пищеварительная функция лизосом начинается только после слияния лизосомы с фагосомой, то есть фагоцитированным веществом, окруженным билипидной мембраной. При этом образуется единый пузырек — фаголизосома, в которой смешивается фагоцитированный материал и ферменты лизосомы. После этого начинается расщепление (гидролиз) биополимерных соединений фагоцитированного материала на мономерные молекулы (аминокислоты, моносахара и так далее). Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой, то есть используются или для образования энергии или на построение биополимерных структур. Но не всегда фагоцитированные вещества расщепляются полностью.

Дальнейшая судьба оставшихся веществ может быть различной. Некоторые из них могут быть выведены из клетки посредством экзоцитоза, по механизму, обратному фагоцитозу. Некоторые вещества (прежде всего липидной природы) не расщепляются лизосомальными гидролазами, а накапливаются и уплотняются в фаголизосоме. Такие образования называются третичными лизосомами или остаточными тельцами.

В процессе фагоцитоза и экзоцитоза осуществляется регуляция мембран в клетке:

    в процессе фагоцитоза часть плазмолеммы отшнуровывается и образует оболочку фагосомы;

    в процессе экзоцитоза эта оболочка снова встраивается в плазмолемму.

Установлено, что некоторые клетки в течение часа полностью обновляют плазмолемму.

Кроме рассмотренного механизма внутриклеточного расщепления фагоцитированных экзогенных веществ, таким же способом разрушаются эндогенные биополимеры — поврежденные или устаревшие собственные структурные элементы цитоплазмы. Вначале такие органеллы или целые участки цитоплазмы окружаются билипидной мембраной и образуется вакуоль аутофаголизосома, в которой осуществляется гидролитическое расщепление биополимерных веществ, как и в фаголизосоме.

Следует отметить, что все клетки содержат в цитоплазме лизосомы, но в различном количестве. Имеются специализированные клетки (макрофаги), в цитоплазме которых содержится очень много первичных и вторичных лизосом. Такие клетки выполняют защитные функции в тканях и называются клетками-чистильщиками, так как они специализированы на поглощение большого числа экзогенных частиц (бактерий, вирусов), а также распавшихся собственных тканей.

Пероксисомы — микротельца цитоплазмы (0,1-1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.

Среди органелл клетки самыми разнообразными есть одномембранных органеллы. Это окружены мембранами отсеки цитоплазмы в виде пузырьков, трубочек, мешочков. К одно мембранных органелл относят эндоплазматическая сеть, комплекс Гольджи, лизосомы, вакуоли, пероксисомы и тому подобное. В целом они могут занимать до 17% объема клетки. Одномембранных органеллы образуют систему синтеза, сегрегации (отделения) и внутриклеточного транспорта макромолекул.

Эндоплазматическая сеть , или эндоплазматический ретикулум (от лат. Reticulum - сетка ) - одномембранных органеллы эукариотических клеток в виде замкнутой системы канальцев и плоских мембранных мешочков-цистерн. Впервые ЭПС была открыта американским ученым К. Портером в 1945 году с помощью электронного микроскопа. ЭПС является органелл, которая делит цитоплазму на компартменты и связана с плазмалемме и ядерными мембранами. С участием ЭПС формируется ядерная оболочка в период между делениями клеток.

Строение . ЭПС образуют цистерны, трубчатые мембранные канальцы, мембранные пузырьки-везикулы (транспортируют вещества, синтезируемые) и внутреннее вещество - матрикс с большим количеством ферментов. Ретикулум содержит белки и липиды, среди которых много фосфолипидов, а также ферменты синтеза липидов, углеводов. Мембраны ЭПС, подобно компонентов цитоскелета, полярные: с одного конца они наращиваются, а с другой - распадаются на отдельные фрагменты. Различают два вида эндоплазматической сети: шероховатую (гранулярную ) и гладкую (агра- нулярну ). Шероховатая ЭПС имеет рибосомы, которые образуют комплексы с иРНК (полири- боссом, или полисомы), и присутствует во всех живых эукариотических клетках (за исключением сперматозоидов и зрелых эритроцитов), однако степень ее развития разный и зависит от специализации клеток. Так, сильно развитую шероховатую ЭПС имеют железистые клетки поджелудочной железы, гепатоциты, фибробласты (клетки соединительной ткани, продуцирующие белок коллаген), плазмоциты (продуцируют иммуноглобулины). Гладкая ЭПС не имеет рибосом и является производной от шероховатой. Она преобладает в клетках надпочечников (осуществляет синтез стероидных гормонов), в мышечных клетках (участвует в обмене кальция), клетках основных желез желудка (участие в выделении соляной кислоты).

Функции . Гладкая и шероховатая ЭПС выполняют совместные функции: 1) разграничительную - обеспечивает упорядоченное распределение цитоплазмы; 2) транспортную - осуществляется перенос в клетке необходимых веществ; 3) синтезируя - образования мембранных липидов. Кроме того, каждый из разновидностей ЭПС выполняет свои специальные функции.

Строение ЭПС 1 - свободные рибосомы; 2 - полости ЭПС; С - рибосомы на мембранах ЭПС; 4 - гладкая ЭПС

Виды и функции ЭПС

вид ЭПС

функции

агранулярная

1) депонированных (например, в поперечнопосмугований мышечной ткани существует специализированная гладкая ЭПС, названная саркоплазматического ретикулума, что является резервуаром Са 2+)

2) синтез липидов и углеводов - образуются холестерин, стероидные гормоны надпочечников, половые гормоны, гликоген и др.;

3) детоксицирующие - обезвреживание токсинов

гранулярная

1) биосинтез белков - образуются мембранные белки, секреторные белки, которые поступают в внеклеточное пространство и др.;

2) модифицирующая - происходит модификация белков, которые образовались после трансляции;

3) участие в образовании комплекса Гольджи

Эндоплазматический ретикулум один из важнейших органоидов в эукариотической клетке. Его второе название эндоплазматическая сеть. ЭПС бывает двух разновидностей: гладкая (агранулярная) и шероховатая (гранулярная). Чем более активный обмен веществ в клетке, тем большее там количество ЭПС.

Строение

Это обширный лабиринт из каналов, полостей, везикул, "цистерн", которые тесно связаны и сообщаются друг с другом. Этот органоид покрыт мембраной, которая сообщается как с цитоплазмой, так и с клеточной наружной мембраной. Объем полостей различный, но все они содержат гомогенную жидкость, которая позволяет осуществлять взаимодействие между ядром клетки и внешней средой. Иногда имеются ответвления от основной сети в виде одиночных пузырьков. Шероховатая ЭПС отличается от гладкой наличием на внешней поверхности мембраны большого количества рибосом.

Функции

  • Функции агранулярной ЭПС. Она принимает участие в образовании стероидных гормонов (например, в клетках коры надпочечников). ЭПС, содержащаяся в клетках печени, участвует в разрушении некоторых гормонов, лекарственных препаратов и вредных веществ, и в процессах преобразования глюкозы, которая образуется из гликогена. Также агранулярная сеть производит фосфолипиды, необходимые для строительства мембран всех типов клеток. А в ретикулуме клеток мышечной ткани происходит депонирование ионов кальция, необходимых для сокращения мышц. Такой вид гладкой эндоплазматической сети по-другому называют саркоплазматическим ретикулумом.
  • Функции гранулярной ЭПС. Прежде всего в гранулярном ретикулуме происходит производство белков, которые впоследствии будут выведены из клетки (например, синтез продуктов секреции железистых клеток). А также в шероховатой ЭПС проходит синтез и сборка фосфолипидов и многоцепочечных белков, которые затем транспортируются в аппарат Гольджи.
  • Общими функциями, как для гладкого эндоплазматического ретикулума, так и для шероховатого является разграничительная функция. За счет этих органоидов клетка делится на компартменты (отсеки). И дополнительно эти органеллы являются транспортерами веществ из одной части клетки в другую.

В эндоплазматической сети вырабатывается, процессируется и транспортируется множество веществ, которые используются клеткой или выделяются из неё. Различают гранулярную (зернистую, шероховатую) и гладкую эндоплазматическую сеть (ретикулум). Цистерны гранулярной и гладкой эндоплазматической сети не сообщаются. Клетки, специализированные на выработку белка, имеют более развитую гранулярную эндоплазматическую сеть. Клетки, продуцирующие липиды и стероидные гормоны, содержат выраженную гладкую эндоплазматическую сеть.

Функции эндоплазматической сети: ❖ поставка липидов другим органеллам (гладкая); ❖ гомеостаз Ca2+ (гладкая); ❖ биогенез органелл (гранулярная); ❖ формирование пространственной (трёхмерной) структуры (укладки) белков (гранулярная); ❖ посттрансляционный контроль качества белка (гранулярная).

Гранулярная эндоплазматическая сеть

Гранулярная эндоплазматическая сеть - система плоских мембранных цистерн с находящимися на их наружной поверхности рибосомами (см. рис. 2-22). В шероховатой эндоплазматической сети происходит синтез белков для плазматической мембраны, лизосом, пероксисом, а также синтез белков на экспорт, т.е. предназначенных для секреции. Мембраны гранулярной эндоплазматической сети связаны с наружной мембраной оболочки ядра и перинуклеарной цистерной. Гранулярная эндоплазматическая сеть располагается в непосредственной близости от ядра и комплекса Гольджи. Она участвует в синтезе и процессинге белков, преимущественно предназначенных для выделения из клетки. Рибосомы при помощи рибофоринов связаны с наружной (обращённой в цитозоль) поверхностью сети. Их количество (например, в гепатоците) достигает 13 млн. Собранные на рибосомах белки поступают внутрь цистерны для последующего процессинга. Концентрация белка здесь может превышать 100 мг/мл. Здесь же происходит укладка белков и формирование правильной трёхмерной структуры. В цистернах сети к белкам присоединяются углеводы с образованием гликопротеинов, а также формируются белковые комплексы с металлами. Из эндоплазматической сети многие белки поступают во все компартменты клетки для выполнения своих функций или направляются в комплекс Гольджи для последующей модификации. Резидентные белки и шапероны. Наряду с покидающими сеть белками, имеются резидентные белки, которые постоянно присутствуют в просвете цистерн и нужны для поддержания функции сети, а именно для узнавания образованных здесь белков, их процессирования и удержания в течение необходимого времени до отправления их по нужному адресу. Примером резидентных белков может служить белок BiP - шаперон иммуноглобулин-связывающего белка, принадлежащий семейству белков теплового шока Hsp70. В контроле качества белка участвуют шапероны. В белковом матриксе эндоплазматической сети шапероны предотвращают агрегацию белков и делают возможной эффективную их укладку.

Гладкая эндоплазматическая сеть

Гладкий ретикулум (гладкий ЭР) - система анастомозирующих мембранных каналов, пузырьков и трубочек - не содержит рибофоринов и по этой причине не связан с рибосомами.

Функции гладкой эндоплазматической сети многообразны: синтез липидов и стероидных гормонов, детоксикация и депонирование ионов кальция.

Детоксикация. Одной из наиболее важной функцией гладкого ЭР является детоксикация (при помощи оксидаз гепатоцитов) как продуктов клеточного метаболизма, так и поступающих извне веществ, в том числе этанола и барбитуратов. С участием гладкого ЭР вещества конвертируются в водорастворимые соединения, что способствует их выведению из организма. Для эффективной детоксикации гладкий ЭР в течение нескольких дней может удвоить общую площадь своей поверхности.

Синтез стероидных гормонов. В стероидпродуцирующих клетках (кора надпочечников, половые железы) гладкий ЭР служит для метаболизма стероидов и образования (при участии митохондрий) конечных форм стероидных гормонов.

Депо кальция. Цистерны гладкой эндоплазматической сети многих клеток специализированы для накопления в них Ca2+ путём постоянного откачивания Ca2+ из цитоплазмы, где нормально содержание Ca2+ не превышает 10-7 М. Подобные депо существуют в скелетной и сердечной мышцах, нейронах, хромаффинных клетках, яйцеклетке, эндокринных клетках и т.д. Различные сигналы (например, гормоны, нейромедиаторы, факторы роста) влияют на функции клеток путём изменения концентрации в цитозоле внутриклеточного посредника - Ca2+. Например, условие сокращения мышечных элементов - резкое повышение концентрации Ca2+ в цитозоле. Для этого необходимо постоянно откачивать ионы кальция из цитозоля и накапливать их в специальных депо, образованных Ca2+-запасающими цистернами гладкой эндоплазматической сети. Внутри цистерн находятся Ca2+-связывающие белки. В мембрану цистерн - депо Ca2+ встроены Ca2+-насосы (Ca2+-АТФаза), постоянно закачивающие Ca2+ внутрь цистерн, и Ca2+-каналы, через которые происходит выброс Ca2+ из депо при поступлении сигнала.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло