Функции хрусталика глаза человека. Хрусталик – строение, особенности роста, различия его у взрослых и новорожденных; методы исследования, характеристики в норме и патологии

Хрусталик — это прозрачное и плоское тело, которое обладает маленькими размерами, но не вероятной важностью. Это округлое образование обладает эластичной структурой и играет важную роль в зрительной системе.

Хрусталик состоит из аккомодационного оптического механизма, благодаря которому мы можем видеть предметы на разных расстояниях, регулировать поступающий свет и фокусировать изображение. В этой статье мы подробно рассмотрим строение хрусталика глаза человека, его функциональность и заболевания.

Маленький размер — особенность хрусталика

Главная особенность этого оптического тела — маленький размер. У взрослого человека хрусталик не превышает 10 мм в диаметре. При рассмотрении тела можно отметить, что хрусталик напоминает двояковыпуклую линзу, которая отличается радиусом кривизны в зависимости от поверхности. В гистологии прозрачное тело состоит из 3х частей: основное вещество, капсула и капсулярный эпителий.

Основное вещество

Состоит из эпителиальных клеток, которые образуют нитевидные волокна. Клетки — это единственная составляющая хрусталика, которые преобразуются в шестиугольную призму. В основное вещество не входит кровеносная система, лимфатическая ткань и нервные окончания.

Эпителиальные клетки, под воздействием химического белка кристаллина, теряют свой настоящий цвет и становятся прозрачными. У взрослого человека питание хрусталика и основного вещества происходит из-за влаги, передающегося от стекловидного тела, а во внутриутробном развитии насыщение происходит благодаря стекловидной артерии.

Капсулярный эпителий

Тонкая пленка, покрывающая основное вещество. Выполняет трофическую (питание), камбиальную (регенерация и обновление клеток) и барьерную (ограждение от других тканей) функцию. В зависимости от расположения капсулярного эпителия происходит деление и развитие клеток. Как правило, ростковая зона находится ближе к периферии основного вещества.

Капсула, или сумка

Верхняя часть хрусталика, которая состоит из эластичной оболочки. Капсула защищает тело от воздействия вредоносных факторов, помогает преломлять свет. Крепится к ресничному телу с помощью пояска. Стенки капсулы не превышают 0,02 мм. Утолщаются в зависимости от расположения: чем ближе к экватору, тем толще.

Функции хрусталика


Патология хрусталика глаза

Благодаря уникальному строению прозрачного тела, происходят все зрительные и оптические процессы.

Существует 5 функций хрусталика, которые в совокупности позволяют человеку видеть предметы, различать цвета и фокусировать зрение на различных расстояниях:

  1. Светопроведение. Лучи света проходят через роговицу, попадают в хрусталик и беспрепятственно проникают к стекловидному телу и в сетчатку. Чувствительная оболочка глаза (сетчатка) уже выполняет свои функции по восприятию цветовых и световых сигналов, обрабатывает их и отправляет импульсы в мозг с помощью нервного возбуждения. Без светопроведения человечество было бы полностью лишено зрения.
  2. Светопреломление. Хрусталик — это линза биологического происхождения. Светопреломление происходит за счет шестиугольной призмы хрусталика. В зависимости от состояния аккомодации, показатель преломления меняется (от 15 до 19 диоптрий).
  3. Аккомодация. Данный механизм позволяет фокусировать зрение на любое расстояние (вблизи и вдаль). Когда аккомодационный механизм выходит из строя, то ухудшается зрение. Развиваются такие патологические процессы как дальнозоркость и близорукость.
  4. Защита. Благодаря своему строению и расположению, хрусталик защищает стекловидное тело от попадания бактерий и микроорганизмов. Защитная функция срабатывает с помощью различных воспалительных процессов.
  5. Разделение. Хрусталик находится строго по центру в передней части стекловидного тела. Тонкая линза располагается за зрачком, радужкой и роговицей. Из-за своего расположения линза делит глаз на две части: задний и передний отдел.

Благодаря этому стекловидное тело удерживается в задней камере и не способно передвигаться вперед.

Заболевания и патологии хрусталика глаза


Заболевание хрусталика: афактия

Все патологические процессы и заболевания двояковыпуклого тела появляются на фоне разрастания эпителиальных клеток и их скопления. Из-за этого капсула и волокна теряют эластичность, химические свойства меняются, происходит помутнение клеток, утрачиваются аккомодационные свойства, развивается пресбиопия (аномалия глаза, рефракция).

С какими заболеваниями, патологиями и аномалиями может столкнуться хрусталик?

  • Катаракта. Заболевание, при котором происходит помутнение хрусталика (либо полное, либо частичное). Катаракта возникает при изменении химического состава, когда эпителиальные клетки линзы становятся мутными, а не прозрачными. При заболевании снижается функциональность линзы, хрусталик перестает пропускать свет. Катаракта — это прогрессирующее заболевание. На первых стадиях теряется четкость и контрастность предметов, на поздних стадиях идет полная потеря зрения.
  • Эктопия. Смещение хрусталика с его оси. Возникает на фоне травм глаза и при увеличении глазного яблока, а также при перезрелой катаракте.
  • Деформация формы хрусталика. Существует 2 типа деформации — лентиконус и лентиглобус. В первом случае изменение происходит в передней или задней части, форма хрусталика приобретает очертания конуса. При лентиглобусе деформация происходит по своей оси, в области экватора. Как правило, при деформации возникает снижение остроты зрения. Появляется близорукость или дальнозоркость.
  • Склероз хрусталика, или факосклероз. Уплотнение стенок капсулы. Появляется у людей в возрасте 60 лет и выше на фоне глаукомы, катаракты, близорукости, язвы роговицы и сахарного диабета.

Диагностика и замена хрусталика

Чтобы выявить патологические процессы и аномалии биологической линзы глаза, офтальмологи прибегают к шести способам исследования:

  1. Ультразвуковая диагностика, или УЗИ, назначается для диагностирования структуры глаза, а также для определения состояния глазных мышц, сетчатки и хрусталика.
  2. Биомикроскопическое исследование с помощью глазных капель и щелевой лампы — это бесконтактная диагностика, которая позволяет изучить структуру передней части глазного яблока и установить точный диагноз.
  3. Конгерентная томография глаза, или ОКТ. Неинвазивная процедура, которая позволяет исследовать глазное яблоко и стекловидное тело с помощью рентгеновской диагностики. Конгерентная томография считается одной из самых эффективных методик для выявления патологий хрусталика
  4. Визометрическое исследование, или оценка остроты зрения, применяется без использования ультразвуковых и рентгеновских аппаратов. Острота зрения проверяется по специальной визометрической таблице, которую пациент должен прочесть на расстоянии 5 м.
  5. Кератотопография — уникальный метод, который изучает светопреломление хрусталика и роговицы.
  6. Пахиметрия позволяет обследовать толщину хрусталика с помощью контактного, лазерного или ротационного аппарата.

Главная особенность прозрачного тела — это возможность его замены.

Сейчас с помощью хирургического вмешательства проводят имплантацию хрусталика. Как правило, линза требует замены при помутнении и нарушения свойств светопреломления. Также замена хрусталика назначается при ухудшении зрения (близорукость, дальнозоркость), при деформации линзы и катаракте.

Противопоказания к замене хрусталика


Строение хрусталика глаза: схематически

Противопоказания к операции:

  • Если камера глазного яблока маленького размера.
  • При дистрофии и отслоении сетчатки глаза.
  • Когда уменьшается размеры глазного яблока.
  • При высокой степени дальнозоркости и близорукости.
  • Особенности при замене хрусталика

Пациента обследуют и готовят в течение нескольких месяцев. Проводят всю необходимую диагностику, выявляют аномалии и готовят к операции. Прохождение всех лабораторных анализов — это обязательный процесс, так как любое вмешательство, даже в такое маленькое тело, может привести к осложнениям.

За 5 дней до операции необходимо капать в глаза антибактериальный и противовоспалительный препарат, чтобы во время хирургического вмешательства исключить инфицирование. Как правило, операцию проводит офтальмохирург с помощью местной анестезии. Всего за 5-15 минут специалист аккуратно извлечет старый хрусталик и установит новый имплант.

После всех процедур, в течение нескольких дней, пациенту придется носить защитную повязку и наносить на глазное яблоко заживляющий гель. Улучшение наступает уже через 2-3 часа после хирургического вмешательства. Полностью зрение восстанавливается через 3-5 дней, если пациент не страдает сахарным диабетом или глаукомой.

Хрусталик глаза человека выполняет такие важные функции как светопроведение и светопреломление. Любые тревожные признаки и симптомы являются несомненной причиной посетить специалиста. Развития патологий и аномалий естественной линзы могут привести к полной потери зрения, поэтому важно заботится о своих глазах, следить за своим здоровьем и питанием.

Подробнее о строении глаза — в видеосюжете:

Зрение — один из способов познания мира. Способность видеть во многом контролирует хрусталик глаза, который имея незамысловатое строение, несет в себе важные функции. Быстро перефокусироваться с близко расположенного предмета на дальний позволяет именно он.

Строение глаза можно сравнить с оптической системой фотоаппарата. И если аналогом фотопленки здесь выступает сетчатка, то вместо профессиональной системы линз — роговица и хрусталик.

Когда свет попадает в глаз, сначала на своем пути встречает роговицу и проходит через нее. Она имеет куполообразную форму и характеризуется полным отсутствием кровеносных сосудов. Выйдя из нее, свет попадает в так называемую переднюю камеру глаза. Только после этого этапа наступает черед хрусталика.

Строение «глазной линзы»

Хрусталик — это линза, которая преломляет свет. Ее оптическая сила равна 18 — 20 диоптриям, что сравнительно меньше, чем у роговицы. По всей окружности имеются связочки, похожие на узелки из ниточек, которые соединяются с мышцами стенок глаза.

Эти мышцы имеют способность сокращаться и расслабляться, из — за этого кривизна хрусталика меняется и человек может видеть вблизи и вдали.

Строение хрусталика чем-то напоминает виноградину, имеющая одну косточку. В нем имеется капсульный мешок (или попросту оболочка), ядро (имеющее высокую плотность) и хрусталиковы массы (плотность намного ниже, чем у ядра), которые сравниваются с виноградной мякотью. С возрастом у человека ядро становится все более плотным, что мешает хорошо видеть вблизи.

Вокруг ядра располагается цилиарное тело, которое является продолжением сосудов. У него есть отросточки, которые вырабатывают жидкость внутри глаза. Они через зрачок проникают в , а затем в венозную систему .

Какие функции берет на себя хрусталик

Как уже было сказано выше, данной линзе отводится существенная роль в функционировании зрения, поэтому все функции хрусталика важны:

  1. обеспечивает проход света к сетчатке, что напрямую зависит от прозрачности линзы;
  2. принимает участие в преломлении потока света;
  3. приводит в действие приспособленческий механизм, позволяющий видеть то вблизи, то вдали;
  4. «работает» перегородкой, разделяющей глаз на два отдела разного размера.

Болезни хрусталика

Эта важная часть глаза так же, как и весь организм в целом, подвержена различным заболеваниям. Они могут быть вызваны разными причинами (отклонения в развитии, изменение цвета или расположения и т.д.). Бывают случае, когда глазу наносится травма, что несет в себе угрозу разрыва нитей вязки, которая требует неотложного лечения.

Существует болезнь, которая требует замены линзы на искусственную — это катаракта. При этом заболевании хрусталик мутнеет и человек перестает четко видеть предметы. Причина катаракты могут быть разными, но чаще всего в этом виноваты возрастные изменения. Строение хрусталика позволяет сменить его на искусственный, не задевая остальные части глаза, что гарантирует минимальные риски при операции.

Как хрусталик заменяется на искусственный

Каждый человек испытывает страх при слове «операция». Однако, смена хрусталика длится примерно 15 минут и проводится под местным наркозом. Сразу после нее пациента сутки наблюдают в стационаре, а потом отпускают домой, где можно смотреть телевизор и читать газету. Единственное ограничение — в течение двух недель не разрешается носить тяжести весом более двух килограмм.

После закапывания обезболивающих капель (это и есть местная анестезия), глаз фиксируется расширителем. Хирург — офтальмолог через разрез на роговице удаляет мутный хрусталик и на ее место ставит искусственный. Операция довольна сложная и требует ювелирной работы, но все же считается безопасной, так как линза не контактирует с остальными частями глаза.

Резюмируя о хрусталике

Он состоит из клеток эпителия, не имеет сосудов. В течение всей жизни наблюдаются преобразования его формы, размера и прозрачности. Такое изменение хрусталика, которое ведет к его помутнению и ухудшению зрения, называется катарактой и лечится хирургическим путем.

Функции хрусталика сравниваются с оптической линзой в фотоаппарате и позволяют нам хорошо видеть предметы на разных расстояниях. В юном возрасте линза более мягка и эластична, что позволяет хорошо видеть. С возрастом она становится все плотнее, что может привести к развитию катаракты. Чтобы обезопасить себя глазных заболеваний, раз в полгода посещайте окулиста в профилактических целях.

На современном этапе известно, что хрусталик развивается из эктодермальной плакоды, которая формирует при инвагинации хрусталиковый пузырёк на 3-й неделе эмбриогенеза . По данным некоторых исследователей, плакода инвагинирует вследствие сокращения цитоплазматических нитей, которые имеют диаметр 3,5 - 4,5 нм и располагаются параллельно вершинам клеток.

На начальном этапе развития хрусталика отмечается утолщение эктодермы при контакте с глазным пузырьком - хрусталиковая плакода. На последующих стадиях развития (22-23-й день) клетки хрусталиковой плакоды инвагинируют кзади, образуя вогнутую ямку. Эта инвагинация продолжается и в дальнейшем, а указанная группа клеток, отшнуровываясь от поверхностной эктодермы, превращается в хрусталиковый пузырек. Нежная базальная мембрана, связанная первоначально с поверхностной эктодермой, в этот период покрывает хрусталиковый пузырек, в котором клетки вытянуты вовнутрь. Базальная мембрана, или капсула хрусталика, такая тонкая, что на ранних стадиях развития она не видна при световой микроскопии.

Сохранившаяся над хрусталиковым пузырьком эктодерма смыкается по мере погружения пузырька и в дальнейшем дифференцируется в передний эпителий роговой оболочки. После инвагинации хрусталиковый пузырек отделяется от эктодермы, погружаясь внутрь глазного бокала. После погружения формирующаяся линза приобретает округлую форму. Первоначально деление клеток наблюдается по всему хрусталиковому пузырьку, впоследствии митозы обнаруживаются только в его проксимальной стенке. В это время клетки внутренней стенки прекращают предмитотический синтез ДНК и, соответственно, не поглощают меченый тимидин.

На этой стадии развития выявляются и определенные различия в строении передней и задней стенок хрусталикового пузырька. Передняя стенка остается однослойной и состоящей из кубовидных клеток. Клетки задней стенки постепенно удлиняются и формируют лентовидные волокна. Просвет пузырька уменьшается в объеме и принимает серповидную форму в результате роста волокон. Этот просвет вскоре облитерируется благодаря волокнам, а солидный хрусталик полностью формируется к концу 4-й недели эмбрионального развития.

Капсула хрусталика является истинной базальной мембраной и образуется в результате деятельности эпителиальных клеток. Возникает она на 5-й неделе эмбрионального развития.

В конце 6-й недели клетки задней поверхности пузырька начинают удлиняться, превращаясь в первичные волокна. Основания этих волокон прилежат к задней половине капсулы, образованной по наружной поверхности хрусталикового пузырька его клетками, а вершины быстро достигают эпителиальных клеток передней половины пузырька и к 6,5 неделям вся его полость заполнена ими. Эти волокна представляют собой удлиненные дифференцированные клетки, ядра которых постепенно резорбируются, митохондрии постепенно исчезают. Образуется капсулозрачковая мембрана.

Швы хрусталика начинают формироваться на 2-м месяце эмбрионального развития непосредственно в период образования первичного ядра хрусталика. Во время возникновения первичного ядра хрусталика хрусталиковые волокна распространяются от переднего к заднему полюсу, что и является причиной его сферичности. Дальнейший рост проявляется в неравномерном удлинении хрусталиковых волокон, так что они соединяются у переднего и заднего полюсов с образованием стыка в виде Y-образного шва.

Первоначально существуют два подобных шва - передний и задний. Основная роль швов заключается в том, что именно они позволяют линейно соединяться стыкам волокон. Это предопределяет эллипсоидную форму хрусталика. На поздних стадиях беременности и при рождении рост швов неравномерный. Вместо простого Y-образного шва наблюдается образование сложной дендритической картины.

К 9-й неделе формируется зачаток эмбрионального ядра хрусталика. Уплотнение первичных волокон приводит к уменьшению обьема вещества хрусталика и, как правило, к ослаблению натяжения его капсулы, что компенсируется образованием новых волокон, носящих название вторичных. Тем самым, уже в начале эмбрионального развития хрусталика, в действие приводится механизм его физиологической регенерации, функционирующий затем на протяжении всей жизни. Формирование вторичных волокон начинается на 9- 10-й неделе эмбрионального развития и затем продолжается с постепенно затухающей интенсивностью в течение постнатального онтогенеза, практически прекращаясь только в глубокой старости.

Принято считать, что источником образования этих волокон служат клетки эпителия передней капсулы. В эмбриональном и постэмбриональном периодах развития эти кубические клетки размножаются под всей передней капсулой, но наиболее интенсивно - вблизи экватора. Клетки, расположенные в области экватора хрусталика, перестают размножаться и начинают дифференцироваться, смещаясь своими основаниями по задней капсуле в направлении к заднему полюсу. Одновременно они удлиняются таким образом, что основания формирующихся вторичных клеток - волокон - оказываются у задней капсулы, а верхушки - под ее эпителием у передней. Концы волокон растут по направлению к наружному и внутреннему полюсам хрусталика. Волокна некоторое время сохраняют ядра, расположенные в их средней части, чуть ближе к вершине, и, налагаясь концентрическими слоями на подлежащие им первичные волокна, отодвигают последние внутрь хрусталика. Новые слои дифференцирующихся волокон оттесняют от капсулы ранее образовавшиеся, вследствие чего основания и вершины последних "отрываются " от сумки, формируя в конце 10-й недели соответственно задний и передний хрусталиковые швы, или звезды. Первой появляется задняя звезда хрусталика, а спустя 2 недели - передняя. Эти звезды состоят из цементирующего вещества, находящегося между волокнами хрусталика и располагаются не поверхностно, а проникают до ядра, которым и отделяются друг от друга. Сначала швы имеют по 3-4 плеча, а затем их количество увеличивается. Ядра первичных и вторичных волокон, оказавшихся в глубине хрусталика, постепенно утрачивают ДНК и дегенерируют. Сложившаяся таким образом структура хрусталика не претерпевает принципиальных изменений до конца внутриутробного развития, но вторичное волокнообразование приводит к возрастанию его размеров и массы параллельно росту глазного яблока, увеличивающемуся в этот период в 11-12 раз.

После окончательного формирования эмбрионального ядра дальнейшее образование новых волокон происходит только в экваториальной области. Новые волокна располагаются концентрически вокруг старых волокон вдоль экватора. Именно в этой области видны многочисленные митозы. Рост волокон в области экватора продолжается на протяжении всей жизни человека. При этом хрусталик постоянно увеличивается в размере и массе. Скорость роста с возрастом заметно снижается.

Увеличение массы хрусталика и глаза в целом в пренатальном периоде происходит таким образом, что их доля по отношению к массе плода уменьшается. Так, масса хрусталика на 10-й неделе развития составляет 0,02% массы тела, при рождении - 0,04%, а у взрослого человека - только 0,0006%. Следует отметить, что в эмбриональном периоде вокруг хрусталиковой сумки образуется из окружающей мезенхимы сосудистая оболочка, выполняющая по отношению к нему трофическую функцию. Она получает кровоснабжение через артерию стекловидного тела, а также от веточек зрачковой мембраны и наиболее развита от 2-го до 6-го месяца эмбриогенеза. К моменту рождения она редуцируется. Лишь у 23,3% новорожденных продолжается рассасывание ее остатков.

При сохранности этих временных структур могут быть нарушены зрительные функции, которые требуют хирургической коррекции. Существует мнение, что некоторые виды патологии глаза и хрусталика, в частности, могут быть связаны с включением эмбриональных механизмов развития при эндогенном повреждении их структур.

По мере дифференциации хрусталиковых волокон и смещения их к центральным участкам хрусталика клетки теряют свои ядра, внутрицитоплазматические органоиды, а затем и цитоплазматическую мембрану.
Прогрессивное увеличение количества хрусталиковых волокон в области экватора приводит к появлению зон, характеризующих различные периоды развития хрусталика. Это разделение на зоны является следствием наличия оптических различий между старой, более склеротической зоной центра хрусталика, и новой, более прозрачной зоной. У взрослых обнаруживаются следующие зоны:

  • эмбриональное ядро - прозрачные первичные хрусталиковые волокна, сформированные между 1-м и 3-м месяцами эмбрионального развития;
  • фетальное ядро - вторичные волокна, формирующиеся на 3-8-м месяцах эмбрионального развития;
  • инфантильное ядро - формируется во время последних недель эмбрионального развития до препубертатного периода;
  • ядро взрослых - формируется после окончания препубертатного периода;
  • кора - поверхностные волокна, лежащие под эпителием - спереди и под капсулой - сзади.

Форма и размер хрусталика

Хрусталик представляет собой прозрачное, двояковыпуклое в виде диска полутвердое образование, расположенное между радужкой и стекловидным телом.

  • Хрусталик уникален тем, что он является единственным "органом" тела человека и большинства животных, состоящим из одного типа клеток на всех стадиях эмбрионального развития и постнатальной жизни вплоть до смерти.
  • Существенным отличием его является отсутствие в нем кровеносных сосудов и нервов.
  • Уникален он и по особенностям метаболизма (преобладает анаэробное окисление),
  • химическому составу (наличие специфических белков кристаллинов),
  • отсутствию толерантности организма к его белкам.

Большинство этих особенностей связано с характером его эмбрионального развития.

Передняя и задняя поверхности хрусталика соединяются в так называемой экваториальной области. Экватор хрусталика открывается в заднюю камеру глаза и при помощи ресничного пояска (цинновых связок) присоединен к ресничному эпителию. Благодаря расслаблению ресничного пояска при сокращении ресничной мышцы и происходит деформация хрусталика. При этом выполняется основная его функция - изменение рефракции, позволяющее на сетчатке получить четкое изображение независимо от расстояния до предмета. Для выполнения этой роли хрусталик должен быть прозрачным и эластичным, каковым он и является.

Хрусталик растет непрерывно на протяжении всей жизни человека, утолщаясь примерно на 29 мкм в год. Начиная с 6-7-й недели внутриутробной жизни (18 мм эмбриона) он увеличивается в передне-заднем размере в результате роста первичных хрусталиковых волокон. На стадии развития, когда длина эмбриона достигает 18-26 мм, хрусталик имеет приблизительно сферическую форму. С появлением вторичных волокон (размер эмбриона - 26 мм) хрусталик уплощается и его диаметр увеличивается.

Аппарат ресничного пояска, появляющийся при длине эмбриона 65 мм, не влияет на увеличение диаметра хрусталика. В последующем хрусталик быстро увеличивается в массе и объеме. При рождении он имеет почти сферическую форму.

В первые два десятилетия жизни увеличение толщины хрусталика прекращается, но продолжает увеличиваться его диаметр. Фактором, способствующим увеличению диаметра, является уплотнение ядра. Натяжение ресничного пояска обусловливает изменение формы хрусталика.
Измеренный по экватору диаметр хрусталика взрослого человека равен 9-10 мм. В центре толщина его на момент рождения приблизительно равна 3,5-4 мм, в 40 лет - 4 мм, а к старческому возрасту медленно увеличивается до 4,75-5 мм. Толщина хрусталика зависит от состояния аккомодационной способности глаза.

Возрастные особенности диаметра, массы и объема хрусталика человека
Возраст, лет Сагиттальный диаметр (толщина), мм
Новорожденный 3,5
10 3,9
20-50 4,0-4,14
60-70 4,77
80-90 5,0
Экваториальный диаметр, мм
Новорожденный 6,5
после 15 лет 9,0
Масса, мг
Новорожденный 65
Первый год жизни 130
20-30 174
40-50 204
90 250
Объем, мл
30-40 0,163
80-90 0,244
Толщина капсулы, мкм
Передний полюс 8-14
Экватор 7-17
Задний полюс 2-4
Хрусталиковые волокна, мкм
Длина (мм) 8-12
Толщина (мкм) 4,6
Количество 2100-2300

В отличие от толщины экваториальный диаметр хрусталика с возрастом человека изменяется в меньшей степени. При рождении он равен 6,5 мм, а на 2-ом десятилетии жизни - 9-10 мм, в последующем остается без изменений.

Передняя поверхность хрусталика менее выпуклая, чем задняя. Она представляет собой часть сферы с радиусом кривизны, равным в среднем 10 мм (8-14 мм). Передняя поверхность граничит с передней камерой глаза посредством зрачка, а по периферии - с задней поверхностью радужки. Зрачковый край радужки опирается на переднюю поверхность хрусталика. Боковая поверхность хрусталика обращена в сторону задней камеры глаза и посредством ресничного пояска присоединяется к отросткам ресничного тела.

Центр передней поверхности хрусталика называют передним полюсом. Располагается он примерно на расстоянии 3 мм позади задней поверхности роговой оболочки.

Задняя поверхность хрусталика имеет большую кривизну - радиус кривизны равен 6 мм (4,5-7,5 мм). Её обычно рассматривают в комплексе со стекловидной мембраной передней поверхности стекловидного тела. Тем не менее между этими структурами существует щелеподобное пространство, заполненное жидкостью. Это пространство позади хрусталика было описано ещё Е. Бергером в 1882 г. Его можно наблюдать при передней биомикроскопии.

Экватор хрусталика лежит в пределах ресничных отростков на расстоянии 0,5 мм от них. Экваториальная поверхность неровная. Она имеет многочисленные складки, образование которых связано с тем, что к этой области прикрепляется ресничный поясок. Складки исчезают при аккомодации, то есть в условиях прекращения натяжения связки.

Рефракционный индекс хрусталика равен 1,39, то есть несколько больший, чем рефракционный индекс передней камеры. Именно по этой причине, несмотря на меньший радиус кривизны, оптическая сила хрусталика меньше, чем роговой оболочки. Вклад хрусталика в рефракционную систему глаза равен приблизительно 15 из 40 диоптрий. Аккомодационная сила, равная 15-16 диоптриям при рождении, уменьшается наполовину к 25 годам, а в возрасте 50 лет равна лишь 2 диоптриям.

При биомикроскопическом исследовании хрусталика с расширенным зрачком можно обнаружить особенности его структурной организации. Во-первых, видна его многослойность. Различаются следующие слои, считая спереди к центру:

  • капсула;
  • подкапсулярная светлая зона (кортикальная зона);
  • светлая узкая зона неоднородного рассеивания;
  • полупрозрачная зона коры.

Перечисленные зоны и составляют поверхностную кору хрусталика. Существуют и две более глубоко расположенные зоны коры. Их называют еще перинуклеарными. Эти зоны характеризуются наличием аутофлюоресценции зеленым цветом при освещении хрусталика синим светом.

Ядро рассматривают как пренатальную часть хрусталика. Оно также обладает слоистостью. В центре располагается ясная зона, называемая зародышевым (эмбриональным) ядром. При исследовании хрусталика с помощью щелевой лампы также можно обнаружить швы хрусталика. Зеркальная микроскопия при большой кратности увеличения позволяет увидеть эпителиальные клетки и волокна хрусталика.

Капсула хрусталика

Хрусталик со всех сторон покрыт капсулой. Капсула - это не что иное, как базальная мембрана эпителиальных клеток. Она является самой толстой базальной мембраной тела человека. Спереди капсула толще (до 15,5 мкм), чем сзади. Более выражено утолщение по периферии передней капсулы, поскольку в этом месте прикрепляется основная масса ресничного пояска. С возрастом толщина капсулы увеличивается, особенно спереди. Это связано с тем, что эпителий, являющийся источником базальной мембраны, расположен спереди и участвует в ремодуляции капсулы, отмечаемой по мере роста хрусталика.

Капсула является довольно мощным барьером на пути бактерий и воспалительных клеток, но свободно проходима для молекул, размер которых соизмерим с размером гемоглобина. Хотя капсула не содержит эластических волокон, она исключительно эластична и постоянно находится под действием внешних сил, то есть в растянутом состоянии. По этой причине рассечение или разрыв капсулы сопровождается скручиванием. Свойство эластичности используется при проведении экстракапсулярной экстракции катаракты. Благодаря сокращению капсулы выводится содержимое хрусталика. Это же свойство используется также при YAG- капсулотомии.

В световом микроскопе капсула выглядит прозрачной, гомогенной. В поляризованном свете выявляется ее пластинчатая волокнистая структура. При этом волокнистость располагается параллельно поверхности хрусталика. Капсула также положительно окрашивается при проведении ШИК-реакции, что свидетельствует о наличии в ее составе большого количества протеогликанов.

Ультраструктурно капсула имеет относительно аморфное строение. Незначительная пластинчатость намечается благодаря рассеиванию электронов нитевидными элементами, складывающимися в пластины.
Выявляется около 40 пластин, толщина каждой из которых равна приблизительно 40 нм. При большем увеличении микроскопа выявляются нежные фибриллы диаметром 2,5 нм. Пластины расположены строго параллельно поверхности капсулы.

В постнатальный период отмечается некоторое утолщение задней капсулы, что свидетельствует о возможности секреции базального материала задними кортикальными волокнами.
R. F. Fisher (1969) установил, что 90 % утраты эластичности хрусталика наступает в результате изменения эластичности капсулы. Это предположение подвергнуто сомнению R. A. Weale (1982).

В экваториальной зоне передней капсулы хрусталика с возрастом появляются электронноплотные включения, состоящие из коллагеновых волокон диаметром 15 нм и с периодом поперечной исчерченности, равной 50-60 нм. Предполагается, что они образуются в результате синтетической деятельности эпителиальных клеток. С возрастом появляются и волокна коллагена, периодичность исчерченности которых равна 110 нм.

Места прикрепления ресничного пояска к капсуле названы пластинами Бергера. Другое их название - перикапсулярная мембрана. Это поверхностно расположенный слой капсулы толщиной от 0,6 до 0,9 мкм. Он менее плотный и содержит больше гликозамингликанов, чем остальная часть капсулы. В перикапсулярной мембране обнаруживается фибронектин, витреонектин и другие матричные белки, которые играют определенную роль в прикреплении пояска к капсуле. Волокна этого фиброгранулярного слоя имеют толщину только 1-3 нм, в то время как толщина фибрилл ресничного пояска составляет 10 нм.

Подобно другим базальным мембранам капсула хрусталика богата коллагеном IV типа. Она также содержит I, III и V типы коллагена. Кроме того, в ней обнаруживается и множество других внеклеточных матричных компонентов - ламилин, фибронектин, гепаран сульфат и энтактин.

Проницаемость капсулы хрусталика человека изучалась многими исследователями. Капсула свободно пропускает воду, ионы и другие молекулы небольшого размера. Она является барьером на пути белковых молекул, имеющих размер альбумина (Mr 70 kDa; диаметр молекулы 74 А) и гемоглобина (Mr 66.7 kDa; радиус молекулы 64 А). Различий в пропускной способности капсулы в норме и при катаракте обнаружено не было.

Эпителий хрусталика состоит из одного слоя клеток, лежащих под передней капсулой хрусталика и распространяющихся на экватор. Клетки на поперечных срезах кубовидной формы, а в плоскостных препаратах - полигональной. Количество их приближается к 500 000 в зрелом возрасте. Плотность эпителиоцитов в центральной зоне равна 5009 клеток в 1 мм2 у мужчин и 5781 - у женщин. Плотность увеличивается к периферии хрусталика С возрастом человека плотность клеток снижается.

Аэробное окисление (цикл Кребса) за нимает лишь 3% объема метаболизма всего хрусталика. Причем этот тип дыхания наблюдается только в эпителиальных клетках и наружных хрусталиков волокнах. Тем не менее этот путь окисления обеспечивает до 20 % потребности хрусталика в энергии. Эта энергия используется для обеспечения активных транспортных и синтетических процессов, необходимых для роста хрусталика, синтеза мембран, кристаллинов, белков цитоскелета и нуклеопротеидов.

Функционирует и пентозофосфатный шунт, участвующий в синтезе нуклеопротеидов. Эпителий и поверхностные волокна коры хрусталика участвуют в выведении из него натрия, благодаря деятельности Na+-, К+- насоса. При этом используется энергия АТФ-азы. В задней части хрусталика ионы натрия распространяются пассивно во влагу задней камеры,

В зависимости от особенностей строения и функции выделяют несколько зон эпителиальной выстилки.

  • Центральная зона состоит из относительно постоянного количества клеток, которое медленно уменьшается с возрастом. Они полигональной формы. Ширина клеток - 11-17 мкм, а высота - 5-8 мкм. Своей апикальной поверхностью они прилежат к наиболее поверхностно расположенным хрусталиковым волокнам. Ядра смещены к апикальной поверхности клеток, большого размера и имеют многочисленные ядерные поры. В них, как правило, два ядрышка. Цитоплазма содержит умеренное количество рибосом, полисом, гладкий и шероховатый эндоплазматический ретикулум, маленькие митохондрии. Выражен пластинчатый комплекс (аппарат Гольджи). Обнаруживаются также лизосомы, плотные тела и частицы гликогена. Видны цилиндрической формы микротрубочки диаметром 24 нм, микрофиламенты промежуточного типа (10 нм), филаменты альфа-актинина.
    В цитоплазме эпителиоцитов выявлены так называемые матричные белки - актин, винметин, спектрин, альфа-актинин и миозин. Эти белки обеспечивают жесткость цитоплазмы клетки. В эпителии присутствует также альфа-кристаллин. Бета- и гамма-кристаллины отсутствуют. К капсуле хрусталика клетки присоединяются при помощи полудесмосом. В центрально расположенной зоне редко встречаются митозы. При различных патологических состояниях, в первую очередь после травмы, они более многочисленны.
  • Промежуточная зона находится ближе к периферии хрусталика. Клетки этой зоны цилиндрические с центрально расположенным ядром. Базальная мембрана имеет складчатый вид.
  • Герминативная зона прилежит к преэкваториальной зоне. Она отличается выраженной пролиферативной активностью клеток (66 митозов на 100 000 клеток). Клетки этой зоны по мере деления мигрируют кзади и в последующем превращаются в хрусталиковые волокна. Некоторые из них смещаются и кпереди, в промежуточную зону. Цитоплазма эпителиоцитов содержит малочисленные органоиды. Имеются короткие профили шероховатого эндоплазматического ретикулума, рибосомы, маленькие митохондрии и пластинчастый комплекс. Количество органоидов увеличивается в экваториальной области по мере повышения уровня структурных элементов цитоскелета, актина, винметина, белка микротрубочек, сперктрина, альфа-актинина и миозина. Можно различить целые актиновые сетеподобные структуры, особенно в апикальной и в базальной частях клеток.

Процесс формирования хрусталиковых волокон

После конечного разделения клетки одна или обе дочерние клетки смещаются в смежную переходную зону, в которой они организованы в меридионально ориентированные ряды. В последующем эти клетки дифференцируются во вторичные волокна хрусталика, разворачиваясь на 180° и удлиняясь кпереди и кзади. Новые волокна хрусталика сохраняют полярность таким образом, что задняя (базальная) часть волокна имеет контакт с капсулой (базальной пластинкой), в то время как передняя (апикальная) - отделена от этого эпителием. Эти переходные (транзиторные) формы клеток богаты рибосомами (полисомами), содержат большое количество мультивезикулярных тел. Многочисленны и микротрубочки. По мере дальнейшей дифференциации клетки принимают пирамидальную форму с многочисленными "бугорками", направленными в сторону капсулы.

Предмитотическому состоянию эпителиальных клеток предшествует синтез ДНК в то время как дифференциация клеток в хрусталиковые волокна сопровождается усилением синтеза РНК, поскольку в этой стадии отмечается синтез структурных и мембранных специфических белков. В процессе терминальной дифференциации хрусталиковых волокон ядра пикнотизируются, а затем исчезают. Исчезают и органоиды. Было выявлено, что потеря ядер митохондрий наступает внезапно и в одном поколении клеток. Интенсивность митотических делений уменьшается с возрастом. У молодых крыс в сутки формируется приблизительно пять новых волокон, в то время как у старых - одно.

Ядрышки дифференцирующихся клеток увеличиваются, а цитоплазма становится более базофильной в связи с возрастанием количества рибосом, что объясняется усилением синтеза мембранных компонентов, белков цитоскелета и кристаллинов хрусталика.

Герминативная зона в отличие от центральной защищена радужкой от неблагоприятного воздействия световой энергии, особенно ультрафиолетовой (300-400 нм).

Особенности мембран эпителиальных клеток

За исключением базальной мембраны эпителиальных клеток, которая связывает клетку с капсулой хрусталика, цитоплазматические мембраны соседних эпителиальных клеток формируют определенный комплекс межклеточных связен. Если боковые поверхности клеток слегка волнистые, то апикальные зоны мембран образуют "пальцевые вдавления", погружающиеся в надлежащие хрусталиковые волокна. Базальная часть клеток присоединена к передней капсуле при помощи полудесмосом, а боковые поверхности клеток соединяются десмосомами.

На боковых поверхностях мембран смежных клеток обнаружены щелевые контакты, через которые могут проникать небольшие молекулы. Плотные контакты между эпителиальными клетками хотя и обнаруживаются, но редко. Структурная организация мембран хруста ликовых волокон и характер межклеточных контактов свидетельствуют о возможном наличии на поверхности клеток рецепторов, контролирующих процессы эндоцитоза.

Эндоцитоз, в свою очередь, играет важную роль в перемещении метаболитов между этими клетками. Предполагается существование рецепторов к инсулину, гормону роста и бета-адренергическим антагонистам. На апикальной поверхности эпителиальных клеток выявлены ортогональные частицы, встроенные в мембрану и имеющие диаметр 6-7 нм. Предполагают, что эти образования обеспечивают перемещение между клетками питательных веществ и метаболитов.

Хрусталиковые волокна

Переход от эпителиальных клеток герминативной зоны к хрусталиковому волокну сопровождается исчезновением "пальцевых вдавлений" между клетками и началом удлинения базальной и апикальной частей клетки. По мере постепенного накопления хрусталиковых волокон формируется ядро хрусталика. Это смещение клеток приводит к образованию S- или С-подобной дуги, направленной вперед и состоящей из цепи ядер клеток.

Глубже расположенные волокна хрусталика имеют толщину 150 мкм. Когда они теряют ядра, ядерная дуга исчезает. В области экватора ширина зоны ядерных клеток составляет порядка 300-500 мкм.
Хрусталиковые волокна имеют веретенообразную или ремнеподобную форму, располагаясь по дуге в виде концентрических слоев. На поперечном разрезе в области экватора они гексагональной формы. По мере погружения к центру хрусталика постепенно нарушается их однообразие по размеру и форме. В области экватора у взрослого ширина хрусталикового волокна колеблется от 10 до 12 мкм, а толщина - от 1,5 до 2 мкм.

В задних частях хрусталика волокна более тонкие, что объясняется асимметричной формой хрусталика и большей толщиной передней коры. Концы волокон встречаются в определенном месте и формируют швы.

В фетальном ядре имеется передний вертикально расположенный Y-образный и задний инвертированный Y-образный швы. После рождения к имеющимся швам добавляется множество ответвлений. В результате этого швы приобретают звездоподобный вид. Основное значение швов заключается в том, что, благодаря такой сложной системе контакта между клетками, сохраняется форма хрусталика на протяжении жизни.

Особенности мембран хрусталиковых волокон

Контакты типа "пуговица-петля". Мембраны соседствующих хрусталиковых волокон соединены при помощи разнообразных специализированных образований, изменяющих свое строение по мере смещения волокна с поверхности вглубь хрусталика. В поверхностных 8-10 передних слоях коры волокна соединяются при помощи образований типа "пуговица-петля" ("шар и гнездо"), распределенных равномерно по длине волокна. Подобного типа контакты существуют только между клетками одного слоя, то есть клетками одного поколения, и отсутствуют между клетками разных поколений. Это обеспечивает возможность передвижения волокон относительно друг друга в процессе их роста.

В более глубоко расположенных волокнах контакт типа "пуговица-петля" обнаруживается несколько реже и распределяется вдоль волокна неравномерно и непроизвольно. Видны они и между клетками разных поколений.

В самых глубоких слоях коры и ядра кроме указанных контактов появляются сложные интердигитации в виде гребней, впадин и борозд. Обнаружены также и десмосомы, но только между дифференцирующимися, а не зрелыми хрусталиковыми волокнами.

Предполагают, что контакты между хрусталиковыми волокнами необходимы для поддержания жесткости структуры на протяжении всей жизни, что способствует сохранению прозрачности хрусталика.

Еще один тип межклеточных контактов обнаружен в хрусталике человека. Это щелевой контакт. Предполагают, что такие контакты выполняют две роли.

  • Во-первых, поскольку они соединяют хрусталиковые волокна на большом протяжении, сохраняется архитектоника ткани, тем самым обеспечивается прозрачность хрусталика.
  • Во-вторых, именно благодаря наличию этих контактов происходит распространение питательных веществ между хрусталиковыми волокнами. Это особенно важно для нормального функционирования структур на фоне пониженной метаболической активности клеток (недостаточное количество органоидов).

Выявлено два типа щелевых контактов - кристаллические (с высоким омическим сопротивлением) и некристаллические (с низким). В некоторых тканях (печень) указанные типы щелевидных контактов могут преобразовываться один в другой при изменении ионного состава окружающей среды. В волокне хрусталика они не способны к подобному преобразованию.

  • Первый тип щелевых контактов найден в местах прилегания волокон к эпителиальным клеткам, а второй - только между волокнами
  • Второй тип щелевых контактов (низко-омные) имеют внутримембранные частицы не позволяющие соседним мембранам сближаться более чем на 2 нм. Благодаря этому в глубоких слоях хрусталика уровни ионов и молекул невысокие. Последние достаточно легко распространяются между хрусталиковыми волокнами и их концентрация довольно быстро нормализуется.

Имеются и видовые различия в количестве щелевых контактов. Так, в хрусталике они занимают такую площадь от поверхности волокна: у человека - 5 %, у лягушки - 15 %, у крысы - 30 %, а у цыпленка - 60 %. Щелевых контактов нет в области швов.

Высокая рефракционная способность хрусталика достигается высокой концентрацией белковых филаментов, а прозрачность обеспечивается их строгой организацией, однородностью структуры волокон в пределах каждого поколения и небольшим объемом межклеточного пространства (менее 1% объема хрусталика). Способствует прозрачности и небольшое количество внутрицитоплазматических органоидов, а также отсутствие в хрусталиковых волокнах ядер. Все перечисленные факторы сводят к минимуму рассеивание света между волокнами.

Есть и другие факторы, влияющие на рефракционную способность. Одним из них является повышение концентрации белка по мере приближения к ядру хрусталика. Именно благодаря этому отсутствует хроматическая аберрация. Не меньшее значение в структурной целостности и прозрачности хрусталика имеет и регуляция ионного содержания и степени гидратации волокон.

При рождении хрусталик прозрачен. С возрастом по мере его роста ядро приобретает желтоватый оттенок, что, вероятно, связано с влиянием на него ультрафиолетового излучения (длина волны 315-400 нм). При этом в коре появляются флюоресцирующие пигменты. Предполагают, что эти пигменты экранируют сетчатку от разрушительного действия коротковолновой световой энергии. Пигменты накапливаются в ядре с возрастом, а у некоторых лиц участвуют в образовании пигментной катаракты. В старческом возрасте и, особенно, при ядерной катаракте в ядре хрусталика увеличивается количество нерастворимых белков, которые представляют собой кристаллины со "сшитыми молекулами".

Метаболическая активность в центральных участках хрусталика незначительна. Отсутствует метаболизм белков. Именно поэтому они относятся к долгоживущим белкам и легко подвергаются повреждению окислителями, которые приводят к конформации белковой молекулы и образуют сульфгидрильные группы. Развитие катаракты характеризуется увеличением зон рассеивания света. Это может быть вызвано нарушением регулярности расположения хрусталиковых волокон, изменением структуры мембран и рассеиванием, связанным с преобразованием белковых молекул. Отек хрусталиковых волокон и их разрушение приводят к нарушению водно-солевого обмена.

Аппарат ресничного пояска

Зонулярный аппарат хрусталика состоит из волокон, распространяющихся от ресничного тела к экватору хрусталика. Они достаточно жестко фиксируют хрусталик в определенном положении и позволяют ресничной мышце выполнять свою основную функцию, а именно путем сокращений приводить к деформации хрусталика. При этом, естественно, изменяется его рефракционная способность. Ресничный поясок образует кольцо, имеющее вид треугольника на меридиональном срезе. Основание этого треугольника вогнуто и противостоит экватору хрусталика, верхушка направляется к отросткам ресничного тела, его плоской части и зубчатой линии.

Волокна аппарата ресничного пояска состоят из гликопротеида неколлагенового происхождения, связанного при помощи О- и N-связей с олигосахаридами. Наличие этих связей объясняет их положительное гистохимическое окрашивание при проведении ШИК-реакции.

Волокна аппарата ресничного пояска имеют трубчатое строение и напоминают эластические волокна как химическим составом, так и отношением к протеолитическим ферментам (устойчивость к коллагеназе и трипсину). Эту особенность использовали при интракапсулярной экстракции катаракты, применяя альфа-хемотрипсин, лизирующий аппарат ресничного пояска, но не действующий на капсулу хрусталика.
Недавно установлено, что фибриллы аппарата ресничного пояска богаты цистеином и аналогичны микрофибриллярному компоненту эластической ткани. Эти волокна называются фибриллином и окрашиваются соответствующими моноклональными антителами. В других тканях фибриллин является матрицей для образования эластических волокон. Фибриллин в отличие от окситалана (микрофибриллярный компонент эластической ткани) никогда не превращается в эластические волокна.

Ген, контролирующий синтез фибриллина, располагается в хромосоме 15q21.1. Синдром Марфана, при котором выявляются дислокация хрусталика и различные заболевания сердечно-сосудистой системы, связан с мутаций гена, контролирующего синтез фибриллина.

Как указано выше, ресничный поясок состоит из волокон диаметром 10 нм (от 8 до 12 нм), имеющих строение трубочки на поперечном срезе. В тех случаях, когда филаменты складываются в пучок, появляется периодичность в 40-55 мкм. Между волокнами обнаруживается мелкозернистый и волокнистый материал.
Аппарат ресничного пояска исходит из наружного слоя капсулы хрусталика в экваториальной области. Причем спереди связки прикрепляются к капсуле на протяжении 2,5 мм, а сзади - на протяжении 1 мм. При этом фибриллы, исходящие из переднего отдела экваториальной поверхности хрусталика, направляются кзади и прикрепляются к ресничным отросткам (передние связки), а фибриллы, отходящие от задней поверхности капсулы, направляются к плоской части ресничного тела и зубчатой линии (задние связки).

Экваториальные связки распространяются от ресничных отростков непосредственно к экватору. Выделяют и гиалоидные связки, которые распространяются от плоской части ресничного тела к краю хрусталика в месте его прилегания к стекловидному телу. Здесь они вплетаются в "гиалоидокапсулярные связки" (соответствующие аннулярным волокнам связки Вегенера).

В связи с тем, что связки от хрусталика направляются в различные отделы ресничного тела, между ними образуются потенциальные пространства. Это каналы Hanover (между условно передними и задними выделенными связками) и канал Петита (между задними связками и передней поверхностью стекловидного тела). Использование сканирующей электронной микроскопии способствовало большему пониманию особенностей строения связок и прикрепления их к хрусталику.

Подавляющее большинство волокон исходит из плоской части ресничного тела кпереди на расстоянии 1,5 мм от зубчатой линии. Здесь они переплетаются с внутренней пограничной мембраной эпителиальных клеток или с волокнами переднего отдела стекловидного тела. Большинство волокон складывается в пучки, состоящие из 2-5 фибрилл. Некоторые фибриллы иногда проникают между эпителиальными клетками. Фибриллы обнаруживаются и между пигментированными эпителиальными клетками ресничного эпителия и вплетаются в их базальную мембрану и мембрану Бруха.

Передние связки распространяются пока не достигнут заднего края отростчатой части. Здесь они образуют зонулярное сплетение, которое находится между ресничными отростками, и прикрепляются к их боковым стенкам. Фибриллы зонулярного сплетения плотно присоединяются в основании ресничных гребешков, стабилизируя всю систему связок. Несколько кпереди отростчатой части ресничного тела зонулярное сплетение разделяется на три пучка волокон, направляющихся к передней, экваториальной и задней капсуле хрусталика.

Характер преэкваториального, экваториального и заэкваториального прикрепления ресничного пояска разный.

  • Преэкваториальные связки относительно плотные. Они все прикрепляются на одном и том же расстоянии от экватора (1,5 мм) в виде двойного ряда связок шириной 5-10 мкм. Связки при прикреплении суживаются и расплющиваются в плоскости капсулы хрусталика, формируя при этом ресничные пластинки. Передние связки в месте прикрепления отдают в капсулу тонкие фибриллы (от 0,07 до 0,5 мкм) на глубину 0,6-1,6 мкм. Ресничная пластинка утолщается от 1 до 1,7 мкм. Указывается на то, что число передних связок уменьшается с возрастом. При этом вставки передних связок смещаются к центру капсулы.
  • Экваториальных волокон меньше. Они так же, как передние и задние, щеткоподобно расщепляются при прикреплении к капсуле. Фибриллы обычно шириной от 10 до 15 мкм, но могут достигать и 60 мкм. Задние волокна прикрепляются двумя или тремя слоями в зоне шириной от 0,4 до 0,5 мм. Спереди они прикрепляются к заднему краю экватора хрусталика, сзади простираются приблизительно до 1,25 мм от края экватора. Волокна ресничного пояска погружаются в капсулу хрусталика примерно на 2 мкм.
  • Постэкваториальные волокна , на первый взгляд, кажутся менее развитыми, чем передние. Это мнение ошибочно, поскольку они прикрепляются к капсуле на разных уровнях, включая вплетение в волокна передней поверхности стекловидного тела. Стекловидные связки являются отдельным слоем волокон, которые соединяют передний отдел стекловидного тела с плоской и отростчатой частями ресничного тела.

Streeten предполагает, что слизеподобный характер ресничного пояска является барьером на пути распространения веществ между задней камерой глаза и стекловидным телом.

Возрастные изменения ресничного пояска

В эмбриональный период его волокна более нежные и в меньшей степени соединены между собой. Они также содержат больше протеогликанов. В пожилом возрасте количество волокон уменьшается, особенно меридиональных, и они легче разрываются. В первые два десятилетия жизни вставки ресничного пояска в капсуле хрусталика довольно узкие. Со временем они расширяются и подвигаются к центру капсулы хрусталика. При этом свободная от связок поверхность передней капсулы хрусталика уменьшается с 8 мм в возрасте 20 лет до 6,5 мм на 8-м десятилетии жизни. Иногда она сокращается до 5,5 мм, что существенно усложняет проведение капсулотомии при экстракапсулярной экстракции катаракты.

При интракапсулярной экстракции катаракты большая часть связочного комплекса отрывается от капсулы. Сохраняются лишь кончики передних зонулярных вставок и некоторое количество меридиональных волокон. Ресничный поясок ослаблен при псевдоэксфолиации капсулы хрусталика, что может явиться причиной разрыва ее во время удаления катаракты.

Хрусталик - это элемент , который отвечает за преломление световых лучей перед их дальнейшей проекцией на сетчатку. Благодаря этому человек может видеть окружающие предметы. Эта часть зрительной системы формируется еще на первых неделях развития эмбриона. Глазной хрусталик дает зрению способность к - возможности фокусироваться на дальних и близлежащих объектах при нахождении в одной точке пространства.

Физически строение хрусталика глаза можно сравнить с сильной линзой, выпуклой с обеих сторон. Задняя и передняя его поверхности имеют различный радиус кривизны. То есть впереди он более плоский, чем сзади.

Расположение хрусталика в глазу

Размер хрусталика у взрослого составляет около 10мм. Центральные точки сзади и спереди глазного хрусталика называются полюсами. А условная линия, которая проходит от одного полюса к другому, называется осью. Ее длина колеблется в диапазоне от 3,6 до 5 мм. Проще говоря, ось - это толщина хрусталика. У новорожденного оптическая линза глаза по форме приближена к шару, с возрастом она вытягивается. По мере взросления сила преломления света хрусталиком снижается. Этим объясняется расфокусированный взгляд у младенцев. Позади хрусталика расположено стекловидное тело. Спереди он соседствует с радужкой и камерами глаза.

Адаптивность зрения к фокусировке на дальних и ближних предметах становится возможной благодаря эластичности хрусталика. Такое свойство он имеет из-за особенностей строения. Поверхность линзы человеческого глаза покрывает прозрачная капсула, которая также называется “хрусталиковый мешок”. Передняя ее часть выстлана изнутри эпителием, который при делении и размножении дает возможность хрусталику расти. К ней прикреплены волокна связок цилиарного тела глаза. Это позволяет надежно зафиксировать хрусталик на зрительной оси неподвижно, а еще менять радиус кривизны. Так обеспечивается ясное четкое зрение .

Прозрачность хрусталику придают особые белки - кристаллины. Консистенция внутреннего вещества мягкая, студенистообразная. Внутри есть ядро, которое сверху покрыто кортексом - кортикальными слоями. Вся конструкция по строению похожа на луковицу.

Хрусталик не имеет сосудов и нервных окончаний и состоит из таких частей:

  • Капсула

Это эластичная прозрачная оболочка однородной структуры. Она преломляет лучи света, а также выполняет механическую функцию - защищает вещество хрусталика от воздействия внешних факторов. Капсульный мешок крепится к ресничному поясу.

Толщина оболочки хрусталика не одинакова по всей окружности. Спереди она толще по причине расположения под ней слоя клеток эпителия. По концентрическим кругам, так называемым “поясам”, наибольшая толщина капсулы - в местах крепления ресничного пояска. Самый тонкий слой - в области заднего полюса.

Капсула полупроницаема, поэтому не создает препятствий для обмена в хрусталике.

Строение глазного хрусталика

  • Эпителиальный слой

Эпителий локализован на внутренней передней части капсулы и располагается в один слой. Его клетки плоские и не имеют ороговевшего слоя.

Он выполняет функцию барьера, а также обеспечивает всасывание питательных веществ. Из клеток эпителия вырастают волокна хрусталика. Затем из волокон одного ряда формируются радиальные пластинки. Этот процесс происходит всю жизнь, поэтому к старости толщина хрусталика увеличивается. В области зрачков клетки делятся с маленькой активностью, поэтому там активного роста нет.

  • Прозрачное вещество

В составе вещества помимо воды есть белки. У здорового человека содержимое хрусталика полностью прозрачное, но при некоторых заболеваниях его химический состав меняется и оно мутнеет. При этом ухудшается зрение. В центре вещество более плотное, чем по периферии около капсулы.

Симптомы поражения хрусталика

Ядро и кортекс по мере взросления человека становятся плотнее, глазная линза все хуже способна изменять радиус своей кривизны. Связочный аппарат тоже работает со сбоями, он плохо натягивается, связка, прикрепленная к хрусталику становится менее эластичной. Преодолев возрастной рубеж в 40-50 лет, человек, у которого ранее было идеальное зрение, начинает замечать, что он стал хуже видеть, ему труднее читать. Буквы расплываются перед глазами, а изображение на экране или мониторе выглядит размытым.

Для определения состояния хрусталика врач проводит диагностику биомикроскопом

Причиной ухудшения состояния хрусталика может стать и тупая травма глаза или наличие сопутствующего заболевания, например, глаукомы. В последнем случае хрусталик мутнеет быстрее, чем это произошло бы у этого же человека при возрастных изменениях.

Диагностика патологий глазного хрусталика

В основе диагностики, которая позволяет определить патологию хрусталика или его связочного аппарата, лежит биомикроскопия переднего отрезка и проверка остроты зрения. За аппаратом врач-офтальмолог проверяет у пациента такие параметры:

  • Размер хрусталика;
  • Наличие и локализацию помутнений;
  • Степень прозрачности;
  • Целостность и нарушения в строении хрусталика.

Чтобы исследовать глаза более детально, может понадобиться расширение зрачка. В некоторых случаях такая мера может временно улучшить зрение. Это происходит потому что диафрагма начинает пропускать свет через открывшиеся прозрачные участки.

При отклонениях от нормы такие параметры, как толщина или длина могут вызывать излишне плотное прилегание хрусталика к цилиарному телу или радужке глаза. В этом случае угол передней камеры сужается. Из-за этого ухудшается отток жидкости, содержащейся внутри глаза. Так может возникнуть узкоугольная . Для того, чтобы произвести оценку расположения хрусталика, применяют ультразвуковую микроскопию либо оптическую томографию.

Виды заболеваний хрусталика и их лечение

Патологии хрусталика могут быть врожденными. Вследствие некоторых заболеваний оптическая линза глаза может иметь неправильное положение, в том числе из-за слабого связочного аппарата. В ядре или кортексе (периферии) могут локализоваться мутные участки. Это снижает зрение.

Самыми распространенными заболеваниями, поражающими хрусталик, являются катаракта и глаукома.

Возрастное помутнение можно приостановить или замедлить при помощи специальных капель, но изменения, которые уже произошли, такая мера уже не исправит. Обычно хрусталик восстанавливают хирургическим путем. При значительном ухудшении состояния этой части глаза производится полная замена на искусственный аналог - интраокулярную линзу. Операция на собственном хрусталике не дает гарантии полного устранения помутнения и хирург не может гарантировать остановку этого процесса в дальнейшем.

Катаракта хрусталика

Катаракту удаляют с помощью различных методик. Вариант подбирают индивидуально для каждого пациента в зависимости от состояния здоровья, наличия противопоказаний, степени заболевания, плотности и мутности глазной линзы, финансовых возможностей пациента, квалификации хирурга-офтальмолога.

Это может быть, к примеру, интро- или экстракапсулярная экстракция, при которой хирурги извлекают хрусталик с капсулой или без, потом заменяют его на имплантат, и впоследствии на роговицу накладывают шов. Или можно прибегнуть к менее травматичной, но более дорогой факоэмульсификации, при которой делают минимальные тоннельные разрезы, они потом самостоятельно герметизируются.

Также среди патологий хрусталика глаза существует эктопия. Она выражается в смещении хрусталика, причем как в пределах зоны зрачка, так и за его границы. Ее причинами могут быть опухоли, миопия высокой степени, травмы, перезрелая катаракта. Также это заболевание может быть связано с врожденной недоразвитостью связочного аппарата глаза, когда связка слабая или в ней частично отсутствуют волокна. Следствиями этой патологии становятся такие осложнения как , астигматизм, увеит, рефракция. По вине последней у человека могут возникать оптические дефекты.

Еще существует такая патология как . Это состояние еще называют “синдром ленивого глаза”. В этом случае мозг при наличии каких-то проблем с глазом, “выключает” его из зрительного процесса, чтобы избежать двоения. В результате постоянного подавления функции зрения, появляется риск его полной потери.

Аномалии хрусталика глаза

Хрусталик может иметь аномальную форму. В этом случае у больного могут диагностировать одну из таких патологий: лентиконус, колобома, микрофакия, бифакия (двойной хрусталик) или афакия (полное его отсутствие), сферофакия. В случае таких нарушений строения пациенту проводится профилактика осложнений, таких как амблиопия.

При микрофакии хрустальная линза может быть ущемлена или и вовсе выпасть. В таком случае повышается внутриглазное давление и возникает сильная боль. В этой ситуации хрусталик немедленно удаляют.

Аномальное состояние хрусталика и радужки

При такой аномалии, как сферофакия, хрусталик остается в форме шара, не вытягиваясь по форме. Эта патология обычно является наследственной и сочетается с вывихами, вторичной или микрофакией. Передняя камера глаза при этом глубокая. У пациента часто параллельно диагностируют . При этой патологии лечат только последствия и осложнения. Первопричина терапии не подлежит.

При патологии, именуемой в медицине “бифакия”, у пациента в глазу находятся два хрусталика разной величины. Они могут располагаться в разной плоскости. Встречается такое явление крайне редко. Его причиной служит задержка регресса определенных сосудов, которые во внутриутробном периоде давят на хрусталик эмбриона.

Колобома у пациентов встречается редко и обусловлена наследственным фактором. Такая патология зашифрована в генетическом коде человека и в анамнезе у его родных такое явление тоже отмечено. При этом аномальном явлении в области экваториального края хрусталика наблюдается отсутствие одного кусочка, маленькой части, которая в норме должна быть. Отсутствующий сегмент имеет форму эллипса, треугольника или может быть серповидным. Колобома в глазу обычно одна, реже - две. Если она маленькая, то обычно влияния на остроту зрения не оказывает. В противном случае может появиться миопия или хрусталиковый . Сам хрусталик при такой патологии сохраняет свою прозрачность. Пациенту с колобомой чаще всего назначают оптическую коррекцию нарушений рефракции, проводят профилактику амблиопии.

Лентиконус - аномалия, возникающая после травмы глаза или имеющая врожденный характер. Она характеризуется изменением поверхностной формы хрусталика. Локализуется такая патология на одном глазу, внутри, сзади или спереди. При этом аномальном явлении можно наблюдать выпячивание конусообразной или шаровидной формы в сторону передней камеры, собственной толщи либо стекловидного тела глаза.

Удаление хрусталика показано только при больших размерах лентиконуса. В других случаях проводят лечебные курсы с помощью и расширения зрачка с помощью медикаментов. Патология может вызвать снижение остроты зрения или стать причиной амблиопии.

Хрусталик глаза – это природная линза глаза , расположенная напротив зрачка. Важнейший элемент в оптической системе глаза.

Он имеет двояковыпуклую форму и является частью светопроводящей и светопреломляющей системы глаза. С обеих сторон хрусталик глаза прикреплен к цилиарному телу.

Внутренняя часть хрусталика прилегает к , а наружная часть обращена к радужке, . В норме хрусталик глаза прозрачный. В строение глаза хрусталик играет одну из главных ролей.

Строение хрусталика и оптические свойства

Размер хрусталика в толщину составляет от 3.6 до 5 мм, а в толщину от 8 до 10 мм.

В нем выделяют несколько структур :

— капсулу;
— капсулярный эпителий;
— основное вещество.

Капсула – это тонкая, прозрачная оболочка однородного характера, которая покрывает хрусталик. Она выполняет преломляющую и защитную функции. Толщина капсулы на всей её протяженности разная. Спереди капсула толще, чем сзади, так как там имеется одиночный слой клеток эпителия.

Эпителий хрусталика является однослойным плоским и неороговевающим. Его основными функциями являются питательная функция, барьерная и камбиальная.

Основное вещество – большую часть хрусталика составляют волокна, которые представлены клетками эпителия вытянутыми в длину. Каждое из волокон прозрачное. Белок кристаллин входящий в состав вещества позволяет ему быть абсолютно прозрачным. Вещество не содержит сосудов и нервов. Питают хрусталик водянистое влага и стекловидное тело.

Преломляющая сила хрусталика зависит от состояния , в покое сила преломления хрусталика составляет около 19 диоптрий, а при степени максимального напряжения аккомодации этот показатель увеличивается до 33 диоптрий.

Диагностика состояния хрусталика

Диагностика функционального состояния и общего состояния хрусталика основывается на определении остроты зрения и биомикроскопии переднего отрезка. Инструментальное обследование, которое проводит врач — офтальмолог позволяет определить строение и размер вашего хрусталика. Также определяется прозрачность хрусталика, наличие помутнений их расположение, которые могут оказывать негативное воздействие на остроту зрения.

На основание жалоб и клинических признаков проводят биомикроскопию и оптическую когерентную томографию. Это позволяет оценить положение хрусталика по отношению к цилиарному телу и радужной оболочке. Дело в том, что увеличенный в диаметре или в высоту хрусталик глаза может очень тесно прилегать к цилиарному телу или приводя к сужению угла передней камеры. Это является основной причиной развития закрытоугольной глаукомы.

Лечение заболеваний хрусталика

Самое эффективное лечение заболеваний хрусталика это хирургическая операция. В медицинской практике используются капли, которые позволяют остановить возрастное помутнение хрусталика. Но применяя эти капли невозможно вернуть прозрачность хрусталика, а также гарантировать, что помутнение остановится. Результатом удаления помутневшего хрусталика является полное выздоровление пациента.

Существуют разные методики , это может быть экстракапсулярная экстракция, при которой накладываются швы на и факоэмульсификация. На выбор методики влияет степень помутнения и её плотность, протность связочного аппарата и сааме главное опыт и квалификация врача.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло