Найти интервалы возрастания и убывания функции онлайн. Возрастание и убывание функций, экстремумы

"Возрастание и убывание функции"

Цели урока:

1. Научить находить промежутки монотонности.

2. Развитие мыслительных способностей, обеспечивающих анализ ситуации и разработку адекватных способов действия (анализ, синтез, сравнение).

3. Формирование интереса к предмету.

Ход урока

Сегодня мы продолжаем изучать приложение производной и рассмотрим вопрос о её применениик исследованию функций. Фронтальная работа

А теперь дадим некоторые определения свойствам функции “Мозговой штурм”

1. Что называют функцией?

2. Как называется переменная Х?

3. Как называется переменная Y?

4. Что называется областью определения функции?

5. Что называется множеством значения функции?

6. Какая функция называется чётной?

7. Какая функция называется нечётной?

8. Что можно сказать о графике чётной функции?

9. Что можно сказать о графике нечётной функции?

10. Какая функция называется возрастающей?

11. Какая функция называется убывающей?

12. Какая функция называется периодической?

Математика изучает математические модели. Одной из главнейших математических моделей является функция. Существуют разные способы описания функций. Какой самый наглядный?

– Графический.

– Как построить график?

– По точкам.

Этот способ подойдет, если заранее известно, как примерно выглядит график. Например, что является графиком квадратичной функции, линейной функции, обратной пропорциональности, функции y = sinx? (Демонстрируются соответствующие формулы, учащиеся называют кривые, являющиеся графиками.)

А что если требуется построить график функции или еще более сложной? Можно найти несколько точек, но как ведет себя функция между этими точками?

Поставить на доске две точки, попросить учеников показать, как может выглядеть график “между ними”:

Выяснить, как ведет себя функция, помогает ее производная.

Откройте тетради, запишите число, классная работа.

Цель урока: узнать, как связан график функции с графиком ее производной, и научиться решать задачи двух видов:

1. По графику производной находить промежутки возрастания и убывания самой функции, а также точки экстремума функции;

2. По схеме знаков производной на промежутках находить интервалы возрастания и убывания самой функции, а также точки экстремума функции.

Подобные задания отсутствуют в наших учебниках, но встречаются в тестах единого государственного экзамена (часть А и В).

Сегодня на уроке мы рассмотрим небольшой элемент работы второго этапа изучения процесса, исследование одного из свойств функции - определение промежутков монотонности

Для решения поставленной задачи, нам необходимо вспомнить некоторые вопросы, рассмотренные ранее.

Итак, запишем тему сегодняшнего урока: Признаки возрастания и убывания функции.

Признаки возрастания и убывания функции:

Если производная данной функции положительна для всех значений х в интервале (а; в), т.е.f"(x) > 0, то функция в этом интервале возрастает.
Если производная данной функции отрицательна для всех значений х в интервале(а; в), т.е.f"(x) < 0, то функция в этом интервале убывает

Порядок нахождения промежутков монотонности:

Найти область определения функции.

1. Найти первую производную функции.

2. решать самой на доске

Найти критические точки, исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции. Найти промежутки монотонности функций:

а) область определения,

б) найдем первую производную:,

в)найдем критические точки: ; , и

3. Исследуем знак производной в полученных промежутках, решение представим в виде таблицы.

указатьна точки экстремума

Рассмотрим несколько примеровисследования функции на возрастание и убывание.

Достаточное условие существования максимума состоит в смене знака производной при переходе через критическую точку с "+" на "-", а для минимума с "-" на "+". Если при переходе через критическую точку смены знака производной не происходит, то в данной точке экстремума нет

1. Найти Д(f).

2. Найти f"(x).

3. Найти стационарные точки, т.е. точки, где f"(x) = 0 или f"(x) не существует.
(Производная равна 0 в нулях числителя, производная не существует в нулях знаменателя)

4. Расположить Д(f) и эти точки на координатной прямой.

5. Определить знаки производной на каждом из интервалов

6. Применить признаки.

7. Записать ответ.

Закрепление нового материала.

Учащиеся работают в парах, решение записывают в тетрадях.

а) у = х³ - 6 х² + 9 х - 9;

б) у = 3 х² - 5х + 4.

Двое работают у доски.

а) у = 2 х³ – 3 х² – 36 х + 40

б) у = х4-2 х³

3.Итог урока

Домашнее задание: тест (дифференцированный)

Функция называетсявозрастающей на интервале
, если для любых точек

выполняется неравенство
(большему значению аргумента соответствует большее значение функции).

Аналогично, функция
называетсяубывающей на интервале
, если для любых точек
из этого интервала при выполнении условия
выполняется неравенство
(большему значению аргумента соответствует меньшее значение функции).

Возрастающие на интервале
и убывающие на интервале
функции называютсямонотонными на интервале
.

Знание производной дифференцируемой функции позволяет находить интервалы ее монотонности.

Теорема (достаточное условие возрастания функции).
функции
положительна на интервале
, то функция
монотонно возрастает на этом интервале.

Теорема (достаточное условие убывания функции). Если производная дифференцируемой на интервале
функции
отрицательна на интервале
, то функция
монотонно убывает на этом интервале.

Геометрический смысл этих теорем состоит в том, что на интервалах убывания функции касательные к графику функции образуют с осью
тупые углы, а на интервалах возрастания – острые (см.рис. 1).

Теорема (необходимое условие монотонности функции). Если функция
дифференцируема и
(
) на интервале
, то она не убывает (не возрастает) на этом интервале.

Алгоритм нахождения интервалов монотонности функции
:


Пример. Найти интервалы монотонности функции
.

Точка называетсяточкой максимума функции

такое, что для всех, удовлетворяющих условию
, выполнено неравенство
.

Максимум функции – это значение функции в точке максимума.

На рис 2 показан пример графика функции, имеющей максимумы в точках
.

Точка называетсяточкой минимума функции
, если существует некоторое число
такое, что для всех, удовлетворяющих условию
, выполнено неравенство
. Нарис. 2 функция имеет минимум в точке .

Для максимумов и минимумов есть общее название – экстремумы . Соответственно точки максимума и точки минимума называются точками экстремума .

Функция, определенная на отрезке, может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

В точках экстремума у производной есть особые свойства.

Теорема (необходимое условие экстремума). Пусть в точке функция
имеет экстремум. Тогда либо
не существует, либо
.

Те точки из области определения функции, в которых
не существует или в которых
, называютсякритическими точками функции .

Таким образом, точки экстремума лежат среди критических точек. В общем случае критическая точка не обязана быть точкой экстремума. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум.

Пример. Рассмотрим
. Имеем
, но точка
не является точкой экстремума (см.рис 3).

Теорема (первое достаточное условие экстремума). Пусть в точке функция
непрерывна, а производная
при переходе через точкуменяет знак. Тогда– точка экстремума: максимума, если знак меняется с «+» на «–», и минимума, если с «–» на «+».

Если при переходе через точку производная не меняет знак, то в точкеэкстремума нет.

Теорема (второе достаточное условие экстремума). Пусть в точке производная дважды дифференцируемой функции
равна нулю (
), а ее вторая производная в этой точке отлична от нуля (
) и непрерывна в некоторой окрестности точки. Тогда– точка экстремума
; при
это точка минимума, а при
это точка максимума.

Алгоритм нахождения экстремумов функции с помощью первого достаточного условия экстремума:

    Найти производную.

    Найти критические точки функции.

    Исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов.

    Найти экстремальные значения функции.

Алгоритм нахождения экстремумов функции с помощью второго достаточного условия экстремума:


Пример. Найти экстремумы функции
.


Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика . К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале.

В этой статье дадим необходимые определения, сформулируем достаточный признак возрастания и убывания функции на интервале и достаточные условия существования экстремума, применим всю эту теорию к решению примеров и задач.

Навигация по странице.

Возрастание и убывание функции на интервале.

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.


На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
  • если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ:

Функция возрастает при , убывает на интервале (0;2] .

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Другими словами:

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.
  • Находим производную функции на области определения.
  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).
  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2 .

Находим производную:

Нулями числителя являются точки x=-1 и x=5 , знаменатель обращается в ноль при x=2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .

Пример.

Найдите точки экстремума и экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:

Найдем производную функции:

В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:

В это же время, исходная функция является непрерывной в точке x=0 (смотрите раздел исследование функции на непрерывность):

Найдем значения аргумента, при котором производная обращается в ноль:

Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6 .

То есть,

Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .

Вычисляем соответствующие минимумы функции

Вычисляем соответствующие максимумы функции

Графическая иллюстрация.

Ответ:

.

Второй признак экстремума функции.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Производной. Если производная функции положительна для любой точки интервала, то функция возрастает, если отрицательна – убывает.

Чтобы найти промежутки возрастания и убывания функции, нужно найти область ее определения, производную, решить неравенства вида F’(x) > 0 и F’(x)

Решение.



3. Решим неравенства y’ > 0 и y’ 0;
(4 - x)/x³


Решение.
1. Найдем область определения функции. Очевидно, что выражение, стоящее в знаменателе, должно всегда быть отличным от нуля. Поэтому 0 исключается из области определения: функция определена при x ∈ (-∞; 0)∪(0; +∞).

2. Вычислим производную функции:
y’(x) = ((3·x² + 2·x - 4)’ ·x² – (3·x² + 2·x - 4) · (x²)’)/x^4 = ((6·x + 2) ·x² – (3·x² + 2·x - 4) ·2·x)/x^4 = (6·x³ + 2·x² – 6·x³ – 4·x² + 8·x)/x^4 = (8·x – 2·x²)/x^4 = 2· (4 - x)/x³.

3. Решим неравенства y’ > 0 и y’ 0;
(4 - x)/x³

4. Левая часть неравенства имеет один действительный х = 4 и обращается в при x = 0. Поэтому значение x = 4 включается и в промежуток , и в промежуток убывания, а точка 0 не включается .
Итак, искомая функция возрастает на промежутке x ∈ (-∞; 0) ∪ .

4. Левая часть неравенства имеет один действительный х = 4 и обращается в при x = 0. Поэтому значение x = 4 включается и в промежуток , и в промежуток убывания, а точка 0 не включается .
Итак, искомая функция возрастает на промежутке x ∈ (-∞; 0) ∪ .

Источники:

  • как найти на функции промежутки убывания

Функция представляет собой строгую зависимость одного числа от другого, или значения функции (y) от аргумента (х). Каждый процесс (не только в математике), может быть описан своей функцией, которая будет иметь характерные особенности: промежутки убывания и возрастания, точки минимумов и максимумов и так далее.

Вам понадобится

  • - бумага;
  • - ручка.

Инструкция

Пример 2.
Найти промежутки убывания f(x)=sinx +x.
Производная данной функции будет равна: f’(x)=cosx+1.
Решая неравенство cosx+1

Интервалом монотонности функции можно назвать промежуток, в котором функция либо только возрастает, либо только убывает. Ряд определенных действий поможет найти такие диапазоны для функции, что нередко требуется в алгебраических задачах подобного рода.

Инструкция

Первым шагом в решении задачи по определению интервалов, в которых функция монотонно возрастает или убывает, станет вычисление данной функции. Для этого узнайте все значения аргументов (значения по оси абсцисс), для которых можно найти значение функции. Отметьте точки, в которых наблюдаются разрывы. Найдите производную функции. Определив выражение, которое представляет собой производную, приравняйте его к нулю. После этого следует найти корни получившегося . Не про область допустимых .

Точки, в которых функция либо в которых ее производная равна нулю, представляют собой границы интервалов монотонности . Эти диапазоны, а также точки, их разделяющие, следует последовательно внести в таблицу. Найдите знак производной функции в полученных промежутках. Для этого подставьте в выражение, соответствующее производной, любой аргумент из интервала. Если результат положительный, функция в данном диапазоне возрастает, в обратном случае - убывает. Результаты вносятся в таблицу.

В строку, обозначающую производную функции f’(x), записывается соответствующий значениям аргументов : «+» - если производная положительна,«-» - отрицательна или «0» – равна нулю. В следующей строке отметьте монотонность самого исходного выражения. Стрелка вверх соответствует возрастанию, вниз – убыванию. Отметьте функции. Это точки, в которых производная равна нулю. Экстремум может быть либо точкой максимума, либо точкой минимума. Если предыдущий участок функции возрастал, а текущий убывает, это точка максимума. В случае, когда до данной точки функция убывала, а теперь возрастает – это точка минимума. Внесите в таблицу значения функции в точках экстремума.

Источники:

  • что такое определение монотонность

Исследование поведения функции, имеющей сложную зависимость от аргумента, проводится с помощью производной. По характеру изменения производной можно найти критические точки и участки роста или убывания функции.

Возрастание и убывание функции

функция y = f (x ) называется возрастающей на отрезке [a , b ], если для любой пары точек х и х" , а ≤ х выполняется неравенство f (x ) f (x" ), и строго возрастающей - если выполняется неравенство f (x ) f (x" ). Аналогично определяется убывание и строгое убывание функции. Например, функция у = х 2 (рис. , а) строго возрастает на отрезке , а

(рис. , б) строго убывает на этом отрезке. Возрастающие функции обозначаются f (x ), а убывающие f (x )↓. Для того чтобы дифференцируемая функция f (x ) была возрастающей на отрезке [а , b ], необходимо и достаточно, чтобы её производная f "(x ) была неотрицательной на [а , b ].

Наряду с возрастанием и убыванием функции на отрезке рассматривают возрастание и убывание функции в точке. Функция у = f (x ) называется возрастающей в точке x 0 , если найдётся такой интервал (α, β), содержащий точку x 0 , что для любой точки х из (α, β), х> x 0 , выполняется неравенство f (x 0) f (x ), и для любой точки х из (α, β), х 0 , выполняется неравенство f (x ) ≤ f (x 0). Аналогично определяется строгое возрастание функции в точке x 0 . Если f "(x 0) > 0, то функция f (x ) строго возрастает в точке x 0 . Если f (x ) возрастает в каждой точке интервала (a , b ), то она возрастает на этом интервале.

С. Б. Стечкин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Возрастание и убывание функции" в других словарях:

    Понятия математического анализа. Функция f(x) называется возрастающей на отрезке ВОЗРАСТНАЯ СТРУКТУРА НАСЕЛЕНИЯ соотношение численности разных возрастных групп населения. Зависит от уровней рождаемости и смертности, продолжительности жизни людей … Большой Энциклопедический словарь

    Понятия математического анализа. Функция f(х) называется возрастающей на отрезке , если для любой пары точек x1 и x2, a≤x1 … Энциклопедический словарь

    Понятия матем. анализа. Ф ция f(x) наз. возрастающей на отрезке [а, b], если для любой пары точек х1 и x2, а<или=х1 <х<или=b, выполняется неравенство f(x1)Естествознание. Энциклопедический словарь

    Раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 … Большая советская энциклопедия

    Раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… … Математическая энциклопедия

    У этого термина существуют и другие значения, см. функция. Запрос «Отображение» перенаправляется сюда; см. также другие значения … Википедия

    Аристотель и перипатетики - Аристотелевский вопрос Жизнь Аристотеля Аристотель родился в 384/383 гг. до н. э. в Стагире, на границе с Македонией. Его отец по имени Никомах был врачом на службе у македонского царя Аминта, отца Филиппа. Вместе с семьей молодой Аристотель… … Западная философия от истоков до наших дней

    - (КХД), квантовополевая теория сильного вз ствия кварков и глюонов, построенная по образу квант. электродинамики (КЭД) на основе «цветовой» калибровочной симметрии. В отличие от КЭД, фермионы в КХД имеют дополнит. степень свободы квант. число,… … Физическая энциклопедия

    I Сердце Сердце (лат. соr, греч. cardia) полый фиброзно мышечный орган, который, функционируя как насос, обеспечивает движение крови а системе кровообращения. Анатомия Сердце находится в переднем средостении (Средостение) в Перикарде между… … Медицинская энциклопедия

    Жизнь растения, как и всякого другого живого организма, представляет сложную совокупность взаимосвязанных процессов; наиболее существенный из них, как известно, обмен веществ с окружающей средой. Среда является тем источником, откуда… … Биологическая энциклопедия



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло