Решить систему неравенств примеры с решением. Система неравенств - решение

Системой неравенств принято называть любую совокупность двух или более неравенств, содержащих неизвестную величину.

Наглядно данную формулировку иллюстрируют, к примеру, такие системы неравенств :

Решить систему неравенств - означает найти все значения неизвестной переменной, при которых реализуется каждое неравенство системы, либо обосновать, что таких не бывает.

Значит, для каждого отдельного неравенства системы вычисляем неизвестную переменную. Далее из получившихся значений выбирает только те, которые верны и для первого и для второго неравенства. Следовательно, при подстановке выбранного значения оба неравенства системы становятся правильными.

Разберем решение нескольких неравенств:

Разместим одну под другой пару числовых прямых; на верхнею нанесем величину x , при которых первое неравенств о (x > 1) становиться верным, а на нижней—величину х , которые являются решением второго неравенства (х > 4).

Сопоставив данные на числовых прямых , отметим, что решением для обоих неравенств будет х > 4. Ответ, х > 4.

Пример 2.

Вычисляя первое неравенство получаем -3х < -6, или x > 2, второе -х > -8, или х < 8. Затем делаем по аналогии с предыдущим примером. На верхнюю числовую прямую наносим все те значения х , при которых реализуется первое неравенство системы , а на нижнюю числовую прямую, все те значения х , при которых реализуется второе неравенство системы.

Сопоставив данные, получаем, что оба неравенства будут реализовываться при всех значениях х , размещенных от 2 до 8. Множеств значений х обозначаем двойным неравенством 2 < х < 8.

Пример 3. Найдем

Программа для решения линейных, квадратных и дробных неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Причём, если в процессе решения одного из неравенств нужно решить, например, квадратное уравнение, то его подробное решение также выводится (оно заключается в спойлер).

Данная программа может быть полезна учащимся старших классов при подготовке к контрольным работам, родителям для контроля решения неравенств их детьми.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Правила ввода неравенств

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5y +1/7y^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} y + \frac{1}{7}y^2 \)

При вводе выражений можно использовать скобки. В этом случае при решении неравенства выражения сначала упрощаются.
Например: 5(a+1)^2+2&3/5+a > 0,6(a-2)(a+3)

Выберите нужный знак неравенства и введите многочлены в поля ниже.

Первое неравенство системы.

Нажмите на кнопку для изменения типа первого неравенства.


> >= < <=
Решить систему неравенств

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Системы неравенств с одним неизвестным. Числовые промежутки

С понятием системы вы познакомились в 7 классе и научились решать системы линейных уравнений с двумя неизвестными. Далее будут рассмотрены системы линейных неравенств с одним неизвестным. Множества решений систем неравенств могут записываться с помощью промежутков (интервалов, полуинтервалов, отрезков, лучей). Также вы познакомитесь обозначениями числовых промежутков.

Если в неравенствах \(4x > 2000 \) и \(5x \leq 4000 \) неизвестное число х одно и то же, то эти неравенства рассматривают совместно и говорят, что они образуют систему неравенств: $$ \left\{\begin{array}{l} 4x > 2000 \\ 5x \leq 4000 \end{array}\right. $$

Фигурная скобка показывает, что нужно найти такие значения х, при которых оба неравенства системы обращаются в верные числовые неравенства. Данная система - пример системы линейных неравенств с одним неизвестным.

Решением системы неравенств с одним неизвестным называется то значение неизвестного, при котором все неравенства системы обращаются в верные числовые неравенства. Решить систему неравенств - это значит найти все решения этой системы или установить, что их нет.

Неравенства \(x \geq -2 \) и \(x \leq 3 \) можно записать в виде двойного неравенства: \(-2 \leq x \leq 3 \).

Решениями систем неравенств с одним неизвестным являются различные числовые множества. Эти множества имеют названия. Так, на числовой оси множество чисел х, таких, что \(-2 \leq x \leq 3 \), изображается отрезком с концами в точках -2 и 3.

-2 3

Если \(a отрезком и обозначается [а; b]

Если \(a интервалом и обозначается (а; b)

Множества чисел \(x \), удовлетворяющих неравенствам \(a \leq x полуинтервалами и обозначаются соответственно [а; b) и (а; b]

Отрезки, интервалы, полуинтервалы и лучи называют числовыми промежутками .

Таким образом, числовые промежутки можно задавать в виде неравенств.

Решением неравенства с двумя неизвестными называется пара чисел (х; у), обращающая данное неравенство в верное числовое неравенство. Решить неравенство - это значит найти множество всех его решений. Так, решениями неравенства х > у будут, например, пары чисел (5; 3), (-1; -1), так как \(5 \geq 3 \) и \(-1 \geq -1\)

Решение систем неравенств

Решать линейные неравенства с одним неизвестным вы уже научились. Знаете, что такое система неравенств и решение системы. Поэтому процесс решения систем неравенств с одним неизвестным не вызовет у вас затруднений.

И все же напомним: чтобы решить систему неравенств, нужно решить каждое неравенство по отдельности, а затем найти пересечение этих решений.

Например, исходная система неравенств была приведена к виду:
$$ \left\{\begin{array}{l} x \geq -2 \\ x \leq 3 \end{array}\right. $$

Чтобы решить эту систему неравенств, отметим решение каждого неравенства на числовой оси и найдём их пересечение:

-2 3

Пересечением является отрезок [-2; 3] - это и есть решение исходной системы неравенств.

Существуют только «иксы» и только ось абсцисс, то сейчас добавляются «игреки» и поле деятельности расширяется до всей координатной плоскости. Далее по тексту словосочетание «линейное неравенство» понимаем в двумерном смысле, который прояснится через считанные секунды.

Помимо аналитической геометрии, материал актуален для ряда задач математического анализа, экономико-математического моделирования, поэтому рекомендую проштудировать данную лекцию со всей серьёзностью.

Линейные неравенства

Различают два типа линейных неравенств:

1) Строгие неравенства: .

2) Нестрогие неравенства: .

Какой геометрический смысл этих неравенств? Если линейное уравнение задаёт прямую, то линейное неравенство определяет полуплоскость .

Для понимания нижеследующей информации нужно знать разновидности прямых на плоскости и уметь строить прямые. Если возникнут трудности в этой части, прочитайте справку Графики и свойства функций – параграф про линейную функцию.

Начнём с простейших линейных неравенств. Голубая мечта любого двоечника – координатная плоскость, на которой нет ничегошеньки:


Как известно, ось абсцисс задаётся уравнением – «игрек» всегда (при любом значении «икс») равняется нулю

Рассмотрим неравенство . Как его понимать неформально? «Игрек» всегда (при любом значении «икс») положителен. Очевидно, что данное неравенство определяет верхнюю полуплоскость – ведь там и находятся все точки с положительными «игреками».

В том случае, если неравенство нестрогое , к верхней полуплоскости дополнительно добавляется сама ось .

Аналогично: неравенству удовлетворяют все точки нижней полуплоскости, нестрогому неравенству соответствует нижняя полуплоскость + ось .

С осью ординат та же самая прозаичная история:

– неравенство задаёт правую полуплоскость;
– неравенство задаёт правую полуплоскость, включая ось ординат;
– неравенство задаёт левую полуплоскость;
– неравенство задаёт левую полуплоскость, включая ось ординат.

На втором шаге рассмотрим неравенства, в которых отсутствует одна из переменных.

Отсутствует «игрек»:

Или отсутствует «икс»:

С такими неравенствами можно разобраться двумя способами, пожалуйста, рассмотрите оба подхода . Попутно вспомним-закрепим школьные действия с неравенствами, уже разобранные на уроке Область определения функции .

Пример 1

Решить линейные неравенства:

Что значит решить линейное неравенство?

Решить линейное неравенство – это значит найти полуплоскость , точки которой удовлетворяют данному неравенству (плюс саму прямую, если неравенство нестрогое). Решение , как правило, графическое .

Удобнее сразу выполнить чертёж, а потом всё закомментировать:

а) Решим неравенство

Способ первый

Способ весьма напоминает историю с координатными осями, которую мы рассмотрели выше. Идея состоит в преобразовании неравенства – чтобы в левой части оставить одну переменную без всяких констант, в данном случае – переменную «икс».

Правило : В неравенстве слагаемые переносятся из части в часть со сменой знака, при этом знак САМОГО неравенства не меняется (например, если был знак «меньше», то так и останется «меньше»).

Переносим «пятёрку» в правую часть со сменой знака:

Правило ПОЛОЖИТЕЛЬНОЕ не меняется .

Теперь чертим прямую (синяя пунктирная линия). Прямая проведена пунктиром по той причине, что неравенство строгое , и точки, принадлежащие данной прямой, заведомо не будут входить в решение.

Каков смысл неравенства ? «Икс» всегда (при любом значении «игрек») меньше, чем . Очевидно, что этому утверждению удовлетворяют все точки левой полуплоскости. Данную полуплоскость, в принципе, можно заштриховать, но я ограничусь маленькими синими стрелочками, чтобы не превращать чертёж в художественную палитру.

Способ второй

Это универсальный способ. ЧИТАЕМ ОЧЕНЬ ВНИМАТЕЛЬНО!

Сначала чертим прямую . Для ясности, кстати, уравнение целесообразно представить в виде .

Теперь выбираем любую точку плоскости, не принадлежащую прямой . В большинстве случаев, самая лакомая точка, конечно . Подставим координаты данной точки в неравенство :

Получено неверное неравенство (простыми словами, так быть не может), значит, точка не удовлетворяет неравенству .

Ключевое правило нашей задачи :
не удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости не удовлетворяют данному неравенству.
– Если какая-либо точка полуплоскости (не принадлежащая прямой) удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости удовлетворяют данному неравенству.

Можете протестировать: любая точка справа от прямой не будет удовлетворять неравенству .

Какой вывод из проведённого опыта с точкой ? Деваться некуда, неравенству удовлетворяют все точки другой – левой полуплоскости (тоже можете проверить).

б) Решим неравенство

Способ первый

Преобразуем неравенство:

Правило : Обе части неравенства можно умножить (разделить) на ОТРИЦАТЕЛЬНОЕ число, при этом знак неравенства МЕНЯЕТСЯ на противоположный (например, если был знак «больше либо равно», то станет «меньше либо равно»).

Умножаем обе части неравенства на :

Начертим прямую (красный цвет), причём, начертим сплошной линией, так как неравенство у нас нестрогое , и прямая заведомо принадлежит решению.

Проанализировав полученное неравенство , приходим к выводу, что его решением является нижняя полуплоскость (+ сама прямая).

Подходящую полуплоскость штрихуем либо помечаем стрелочками.

Способ второй

Начертим прямую . Выберем произвольную точку плоскости (не принадлежащую прямой), например, и подставим её координаты в наше неравенство :

Получено верное неравенство , значит, точка удовлетворяет неравенству , и вообще – ВСЕ точки нижней полуплоскости удовлетворяют данному неравенству.

Здесь подопытной точкой мы «попали» в нужную полуплоскость.

Решение задачи обозначено красной прямой и красными стрелочками.

Лично мне больше нравится первый способ решения, поскольку второй таки более формален.

Пример 2

Решить линейные неравенства:

Это пример для самостоятельного решения. Постарайтесь решить задачу двумя способами (к слову, это хороший способ проверки решения). В ответе в конце урока будет только итоговый чертёж.

Думаю, после всех проделанных в примерах действий вам придётся на них жениться не составит труда решить простейшее неравенство вроде и т.п.

Переходим к рассмотрению третьего, общего случая, когда в неравенстве присутствуют обе переменные:

Как вариант, свободный член «цэ» может быть нулевым.

Пример 3

Найти полуплоскости, соответствующие следующим неравенствам:

Решение : Здесь используется универсальный метод решения с подстановкой точки.

а) Построим уравнение прямой , при этом линию следует провести пунктиром, так как неравенство строгое и сама прямая не войдёт в решение.

Выбираем подопытную точку плоскости, которая не принадлежит данной прямой, например, , и подставим её координаты в наше неравенство:

Получено неверное неравенство , значит, точка и ВСЕ точки данной полуплоскости не удовлетворяют неравенству . Решением неравенства будет другая полуплоскость, любуемся синими молниями:

б) Решим неравенство . Сначала построим прямую. Это сделать несложно, перед нами каноничная прямая пропорциональность . Линию проводим сплошняком, так как неравенство нестрогое.

Выберем произвольную точку плоскости, не принадлежащую прямой . Хотелось бы снова использовать начало координат, но, увы, сейчас оно не годится. Поэтому придётся работать с другой подругой. Выгоднее взять точку с небольшими значениями координат, например, . Подставим её координаты в наше неравенство:

Получено верное неравенство , значит, точка и все точки данной полуплоскости удовлетворяют неравенству . Искомая полуплоскость помечена красными стрелочками. Кроме того, в решение входит сама прямая .

Пример 4

Найти полуплоскости, соответствующие неравенствам:

Это пример для самостоятельного решения. Полное решение, примерный образец чистового оформления и ответ в конце урока.

Разберём обратную задачу:

Пример 5

а) Дана прямая . Определить полуплоскость, в которой находится точка , при этом сама прямая должна входить в решение.

б) Дана прямая . Определить полуплоскость, в которой находится точка . Сама прямая не входит в решение.

Решение : здесь нет необходимости в чертеже, и решение будет аналитическим. Ничего трудного:

а) Составим вспомогательный многочлен и вычислим его значение в точке :
. Таким образом, искомое неравенство будет со знаком «меньше». По условию прямая входит в решение, поэтому неравенство будет нестрогим:

б) Составим многочлен и вычислим его значение в точке :
. Таким образом, искомое неравенство будет со знаком «больше». По условию прямая не входит в решение, следовательно, неравенство будет строгим: .

Ответ :

Творческий пример для самостоятельного изучения:

Пример 6

Даны точки и прямая . Среди перечисленных точек найти те, которые вместе с началом координат лежат по одну сторону от заданной прямой.

Небольшая подсказка: сначала нужно составить неравенство, определяющее полуплоскость, в которой находится начало координат. Аналитическое решение и ответ в конце урока.

Системы линейных неравенств

Система линейных неравенств – это, как вы понимаете, система, составленная из нескольких неравенств. Лол, ну и определение выдал =) Ёжик – это ёжик, ножик – это ножик. А ведь правда – получилось просто и доступно! Нет, если серьёзно, не хочется приводить каких-то примеров в общем виде, поэтому сразу перейдём к насущным вопросам:

Что значит решить систему линейных неравенств?

Решить систему линейных неравенств – это значит найти множество точек плоскости , которые удовлетворяют каждому неравенству системы.

В качестве простейших примеров рассмотрим системы неравенств, определяющих координатные четверти прямоугольной системы координат («рисунок двоечников» находится в самом начале урока):

Система неравенств задаёт первую координатную четверть (правая верхняя). Координаты любой точки первой четверти, например, и т.д. удовлетворяют каждому неравенству данной системы.

Аналогично:
– система неравенств задаёт вторую координатную четверть (левая верхняя);
– система неравенств задаёт третью координатную четверть (левая нижняя);
– система неравенств задаёт четвёртую координатную четверть (правая нижняя).

Система линейных неравенств может не иметь решений , то есть, быть несовместной . Снова простейший пример: . Совершенно очевидно, что «икс» не может одновременно быть больше трёх и меньше двух.

Решением системы неравенств может являться прямая, например: . Лебедь, рак, без щуки, тянут воз в две разные стороны. Да воз и ныне там – решением данной системы является прямая .

Но самый распространённый случай, когда решением системы является некоторая область плоскости . Область решений может быть не ограниченной (например, координатные четверти) либо ограниченной . Ограниченная область решений называется многоугольником решений системы .

Пример 7

Решить систему линейных неравенств

На практике в большинстве случаев приходится иметь дело с нестрогими неравенствами, поэтому оставшуюся часть урока водить хороводы будут именно они.

Решение : то, что неравенств многовато, пугать не должно. Сколько может быть неравенств в системе? Да сколько угодно. Главное, придерживаться рационального алгоритма построения области решений:

1) Сначала разбираемся с простейшими неравенствами. Неравенства определяют первую координатную четверть, включая границу из координатных осей. Уже значительно легче, так как область поиска значительно сузилась. На чертеже сразу отмечаем стрелочками соответствующие полуплоскости (красные и синие стрелки)

2) Второе по простоте неравенство – здесь отсутствует «игрек». Во-первых, строим саму прямую , а, во-вторых, после преобразования неравенства к виду , сразу становится понятно, что все «иксы» меньше, чем 6. Отмечаем зелёными стрелками соответствующую полуплоскость. Ну что же, область поиска стала ещё меньше – такой не ограниченный сверху прямоугольник.

3) На последнем шаге решаем неравенства «с полной амуницией»: . Алгоритм решения мы подробно рассмотрели в предыдущем параграфе. Вкратце: сначала строим прямую, потом с помощью подопытной точки находим нужную нам полуплоскость.

Встаньте, дети, встаньте в круг:


Область решений системы представляет собой многоугольник , на чертеже он обведён малиновой линией и заштрихован. Перестарался немного =) В тетради область решений достаточно либо заштриховать, либо жирнее обвести простым карандашом.

Любая точка данного многоугольника удовлетворяет КАЖДОМУ неравенству системы (для интереса можете проверить).

Ответ : решением системы является многоугольник .

При оформлении на чистовик неплохо бы подробно расписать, по каким точкам вы строили прямые (см. урок Графики и свойства функций ), и как определяли полуплоскости (см. первый параграф данного урока). Однако на практике в большинстве случаев вам зачтут и просто правильный чертёж. Сами же расчёты можно проводить на черновике или даже устно.

Помимо многоугольника решений системы, на практике, пусть и реже, встречается открытая область. Попытайтесь разобрать следующий пример самостоятельно. Хотя, точности ради, пыток тут никаких – алгоритм построения такой же, просто область получится не ограниченной.

Пример 8

Решить систему

Решение и ответ в конце урока. У вас, скорее всего, будут другие буквенные обозначения вершин полученной области. Это не принципиально, главное, правильно найти вершины и правильно построить область.

Не редкость, когда в задачах требуется не только построить область решений системы, но и найти координаты вершин области. В двух предыдущих примерах координаты данных точек были очевидны, но на практике всё бывает далеко не айс:

Пример 9

Решить систему и найти координаты вершин полученной области

Решение : изобразим на чертеже область решений данной системы. Неравенство задаёт левую полуплоскость с осью ординат, и халявы тут больше нет. После расчётов на чистовике/черновике или глубоких мыслительных процессов, получаем следующую область решений:

см. также Решение задачи линейного программирования графически , Каноническая форма задач линейного программирования

Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F = C 1 x + C 2 y , которую необходимо максимизировать.

Ответим на вопрос: какие пары чисел ( x ; y ) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x – 5 y ≥ 42 удовлетворяют пары (x , y ) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax + by c , ax + by c . Прямая ax + by = c делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax + by >c , а другой неравенству ax + +by <c .
Действительно, возьмем точку с координатой x = x 0 ; тогда точка, лежащая на прямой и имеющая абсциссу x 0 , имеет ординату

Пусть для определенности a < 0, b >0, c >0. Все точки с абсциссой x 0 , лежащие выше P (например, точка М ), имеют y M >y 0 , а все точки, лежащие ниже точки P , с абсциссой x 0 , имеют y N <y 0 . Поскольку x 0 –произвольная точка, то всегда с одной стороны от прямой будут находиться точки, для которых ax + by > c , образующие полуплоскость, а с другой стороны – точки, для которых ax + by < c .

Рисунок 1

Знак неравенства в полуплоскости зависит от чисел a , b , c .
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:

  1. Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
  2. Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
  3. Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
  4. Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.

Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.

Рассмотрим три соответствующих примера.

Пример 1. Решить графически систему:
x + y – 1 ≤ 0;
–2 x – 2y + 5 ≤ 0.

  • рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
  • построим прямые, задающиеся этими уравнениями.

Рисунок 2

Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x + y– 1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.

Пример 2. Найти графически решения системы неравенств:

Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x + 2y – 2 = 0

x 2 0
y 0 1

y x – 1 = 0
x 0 2
y 1 3

y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y – 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. y x – 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых


Таким образом, А (–3; –2), В (0; 1), С (6; –2).

Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.

Определение 1 . Совокупность точек пространства R n , координаты которых удовлетворяют уравнению а 1 х 1 + а 2 х 2 +…+ a n x n = b , называется (n - 1 )-мерной гиперплоскостью в n -мерном пространстве.

Теорема 1. Гиперплоскость делит все пространство на два полупространства. Полупространство является выпуклым множеством.

Пересечение конечного числа полупространств является выпуклым множеством.

Теорема 2 . Решением линейного неравенства с n неизвестными

а 1 х 1 + а 2 х 2 +…+ a n x n b

является одно из полупространств, на которые все пространство делит гиперплоскость

а 1 х 1 + а 2 х 2 +…+a n x n = b .

Рассмотрим систему из m линейных неравенств с n неизвестными.

Решением каждого неравенства системы является некоторое полупространство. Решением системы будет являться пересечение всех полупространств. Это множество будет замкнутым и выпуклым.

Решение систем линейных неравенств

с двумя переменными

Пусть дана система из m линейных неравенств с двумя переменными.

Решением каждого неравенства будет являться одна из полуплоскостей, на которые всю плоскость разбивает соответствующая прямая. Решением системы будет являться пересечение этих полуплоскостей. Данная задача может быть решена графически на плоскости Х 1 0 Х 2 .

37. Представление выпуклого многогранника

Определение 1. Замкнутое выпуклое ограниченное множество в R n , имеющее конечное число угловых точек , называется выпуклым n -мерным многогранником.

Определение 2 . Замкнутое выпуклое неограниченное множество в R n , имеющее конечное число угловых точек, называется выпуклой многогранной областью.

Определение 3 . Множество А R n называется ограниченным, если найдется n -мерный шар, содержащий это множество.

Определение 4. Выпуклой линейной комбинацией точек называется выражение, гдеt i , .

Теорема (теорема о представлении выпуклого многогранника). Любую точку выпуклого многогранника можно представить в виде выпуклой линейной комбинации его угловых точек.

38. Область допустимых решений системы уравнений и неравенств.

Пусть дана система из m линейных уравнений и неравенств с n неизвестными.

Определение 1 . Точка R n называется возможным решением системы, если ее координаты удовлетворяют уравнениям и неравенствам системы. Совокупность всех возможных решений называется областью возможных решений (ОВР) системы.

Определение 2. Возможное решение, координаты которого неотрицательны, называется допустимым решением системы. Множество всех допустимых решений называется областью допустимых решений (ОДР) системы.

Теорема 1 . ОДР является замкнутым, выпуклым, ограниченным (или неограниченным) подмножеством вR n .

Теорема 2. Допустимое решение системы является опорным тогда и только тогда, когда эта точка являетсяугловой точкой ОДР.

Теорема 3 (теорема о представлении ОДР). Если ОДР - ограниченное множество, то любое допустимое решение можно представить в виде выпуклой линейной комбинации угловых точек ОДР (в виде выпуклой линейной комбинации опорных решений системы).

Теорема 4 (теорема о существовании опорного решения системы). Если система имеет хотя бы одно допустимое решение (ОДР), то среди допустимых решений существует хотя бы одно опорное решение.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло