Транспорт железа в организме. Обмен железа в теле человека

КИНЕТИКА ОБМЕНА ЖЕЛЕЗА

Механизмом, регулирующим обмен железа в организме

человека, является всасывание железа в желудочно-кишечном тракте.

Выделение его из организма кишечником, с кожей, потом и мочой,

являющееся пассивным процессом, лимитировано.

В последние 30 лет большое количество исследований

в нашей стране и за рубежом посвящено изучению различных аспектов

всасывания железа. Однако механизм абсорбции и специфическая роль

слизистой оболочки кишечника в регуляции запасов железа и его

метаболизма неизвестны.

При среднем поступлении с пищей 10-20 мг железа в сутки у

здорового человека не более 1-2 мг абсорбируется в желудочно-

кишечном тракте. Наиболее интенсивно этот процесс происходит в

двенадцатиперстной кишке и начальных отделах тощей кишки. Желудок

играет лишь незначительную роль в усвоении: в нем абсорбируется не

более 1-2% от общего количества поступающего в желудочно-кишечный

тракт. Соотношение в пище продуктов животного и растительного

происхождения, веществ, усиливающих и тормозящих абсорбцию,

функциональное и морфологическое состояние эпителия желудочно-

кишечного тракта все это оказывает влияние на величину усвоения

Кратко остановимся на процессе всасывания железа, состоящем из

ряда последовательных этапов:

1) начальный захват железа щеточной каймой клеток слизистой

оболочки кишечника;

2) внутриклеточный транспорт его образование лабильных запасов

железа в клетке;

3) освобождение железа из слизистой оболочки кишечника в кровь.

В экспериментальных исследованиях показано, что клетки

эпителия слизистой оболочки кишечника чрезвычайно быстро абсорбируют железо

из его полости, причем митохондрии активно участвуют в ранних механизмах

транспорта железа. Значительная часть его (80%) находилась в митохондриях

клеток, а остальная часть - в щеточной кайме в течение 5-20 минут после

введения железа в желудочно-кишечный тракт. Исследования с использованием

достаточную концентрацию железа на поверхности слизистой оболочки клеток для

последующей его абсорбции. При этом железо концентрируется на

щеточной кайме, закисное железо переходит в окисное на мембране

микроворсинок.

Второй этап поступление железа в богатую рибосомами

цитоплазму и латеральное межклеточное пространство, и, наконец,

третий этап перенос железа в кровеносные сосуды собственной

оболочки, где оно захватывается белком крови трансферрином .

Существует точка зрения, что транспортировка железа из цитоплазмы эпителиальных

клеток в кровь может осуществляться ферритином . .



Интенсивность захвата железа из клеток слизистой оболочки

кишечника в кровь зависит от соотношения содержания в плазме

свободного, моножелезистого или дижелезистого (насыщенного)

трансферрина. Свободные молекулы последнего обладают максимальной

способностью связывать железо. Комплекс трансферрин железо

поступает главным образом в костный мозг, небольшая часть его в

запасной фонд, преимущественно в печень, и еще меньшее количество

связанного транферрином железа ассимилируется тканями для

образования миоглобина, некоторых ферментов тканевого дыхания,

нестойких комплексов железа с аминокислотами и белками.

Костный мозг, печень и тонкий кишечник являются тремя

основными органами обмена железа, каждый из которых обладает

системой тканевых рецепторов, специфичных для трансферрина.

Ретикулоциты костного мозга, так же как и клетки эпителия слизистой

оболочки кишечника, имеют повышенную способность захватывать

железо из насыщенных (дижелезистых) форм трансферрина. Таким

образом, ненасыщенный трансферрин лучше связывает, а насыщенный -

лучше отдает железо. Механизмы регуляции активности рецепторных

полей тканей, играющих определенную роль в абсорбции железа, равно

как и взаимоотношения различно насыщенных форм трансферрина до

настоящего времени не раскрыты.

Основным источником плазменного железа является поступления

его из ретикулоэндотелиальной системы внутренних органов (печени,

селезенки, костного мозга), где происходит разрушение гемоглобина

эритроцитов. Небольшое количество железа поступает в плазму из

запасного фонда и при абсорбции его из пищи в желудочно-кишечном

тракте. Преобладающим циклом в интермедиарном обмене железа в

организме человека является образование и разрушение гемоглобина

эритроцитов, что составляет 25 мг железа в сутки.

Ферритин сыворотки крови, вероятно, осуществляет

транспортировку железа от ретикулоэндотелиальных к паренхиматозным

клеткам печени, однако его роль в общем обмене железа в организме

человека представляется минимальной.

Обмен железа между транспортным и тканевым его фондами

изучен недостаточно. Это объясняется прежде всего тем, что механизмы,

пути и количественные аспекты движения железа из тканей, исключая

эритропоэтические, в плазму крови и наоборот изучены мало. Расчетные

данные однако, свидетельствуют о том, что величина плазменно-

тканевого обмена железа приблизительно составляет 6 мг в сутки.

Общая картина обмена железа в организме человека представлена

Н.Г.Колосова, Г.Н.Баяндина, Н.Г.Машукова, Н.А.Геппе
Кафедра детских болезней Первого МГМУ им.И.М.Сеченова

Уменьшение количества железа в организме (в тканевых депо, в сыворотке крови и костном мозге) приводит к нарушению образования гемоглобина и снижению темпов его синтеза, развитию гипохромной анемии и трофическим расстройствам в органах и тканях. Лечение анемии у детей должно быть комплексным и базироваться на нормализации режима и питания ребенка, возможной коррекции причины железодефицита, назначении препаратов железа, сопутствующей терапии. Современные требования к пероральным препаратам железа, применяемым в детской практике, включают высокую биодоступность, безопасность, хорошие органолептические свойства, возможность выбора наиболее удобной лекарственной формы, комплаентность. В наибольшей степени этим требованиям отвечают препараты железа (III)-гидроксид-полимальтозного комплекса (Мальтофер).
Ключевые слова: анемия, железодефицит, дети, Мальтофер.

Iron exchange in the body and ways of correction of its abnormalities
N.G.Kolosova, G.N.Bayandina, N.G.Mashukova, N.A.Geppe
I.M.Sechenov First Moscow State Medical University, Moscow

Decrease of iron in the body (inside tissue depots, in serum and bone marrow) resulted in disturbances of hemoglobin formation, hypochromic anemia development and trophic disorders in organs and tissues. Treatment of anemia in children should be complex and based on normalization of nutrition, correction of cause of iron deficiency, iron preparation administration and concomitant therapy. Current demands for per oral iron medications for childrens include high bioavailability, safety, good organoleptic properties, possibility to choose most comfortable form of drug as well as appropriate compliance. Iron (III)-hydroxide polymaltose complex drugs such as Maltofer® comply with these criteria best of all.
Key words: anemia, iron deficiency, childrens, Maltofer.

Сведения об авторах:
Колосова Наталья Георгиевна – доцент кафедры детских болезней, к.м.н.
Баяндина Галина Николаевна – доцент кафедры детских болезней, к.м.н.
Машукова Наталья Геннадьевна – ассистент кафедры детских болезней, к.м.н.
Геппе Наталья Анатольевна – д.м.н., профессор, заслуженный врач РФ, зав. кафедрой детских болезней

Железо – очень важный микроэлемент для нормального функционирования биологических систем организма. Биологическая ценность железа определяется многогранностью его функций и незаменимостью другими металлами в сложных биохимических процессах, таких как дыхание, кроветворение, иммунобиологические и окислительно-восстановительные реакции. Железо является незаменимой составной частью гемоглобина и миогемоглобина и входит в состав более 100 ферментов, контролирующих: обмен холестерина, синтез ДНК, качество иммунного ответа на вирусную или бактериальную инфекцию, энергетический обмен клеток, реакции образования свободных радикалов в тканях организма. Суточная потребность ребенка в железе в зависимости от возраста составляет 4-18 мг. Как правило, поступающей пищи хватает, чтобы перекрывать потребность организма в железе, но в некоторых случаях необходимо дополнительное поступление железа. Основными источниками железа служат: крупа, печень, мясо. У детей до 1 года усваивается до 70% железа пищи, у детей до 10 лет – 10%, у взрослых – 3%.
В организме железо содержится в нескольких формах. Клеточное железо составляет значительную часть от общего количества, участвует во внутреннем обмене и входит в состав гемсодержащих соединений (гемоглобина, миоглобина, ферментов, например, цитохромов, каталаз, пероксидазы), негемовых ферментов (например, НАДН-дегидрогеназы), металлопротеидов (например, аконитазы). К внеклеточному железу относят свободное железо плазмы и железосвязывающие сывороточные белки (трансферрин, лактоферрин), участвующие в транспорте железа. Железо запасов находится в организме в виде двух белковых соединений – ферритина и гемосидерина – с преимущественным отложением в печени, селезенке и мышцах и включается в обмен при недостаточности клеточного железа.
Источником железа в организме являются пищевое железо, всосавшееся в кишечнике, и железо из разрушаемых в процессе обновления клеток эритроцитов. Различают гемовое (содержащее протопорфирин) и негемовое железо. Обе формы усваиваются на уровне эпителиоцитов двенадцатиперстной кишки и проксимального отдела тощей. В желудке возможна абсорбция только негемового железа, на долю которого приходится не более 20%. В эпителиоцитах гемовое железо распадается на ионизированное железо, окись углерода и билирубин, причем усвоение его не связано с кислотно-пептической активностью желудочного сока. Негемовое железо, получаемое из пищи, первоначально образует легко растворимые соединения с компонентами пищи и желудочного сока, что благоприятствует его усвоению. Ускоренное усвоение железа происходит под влиянием янтарной, аскорбиновой, пировиноградной, лимонной кислот, а также фруктозы, сорбита, метионина и цистеина. Напротив, фосфаты, а также сок поджелудочной железы, содержащий ингибиторы всасывания железа, ухудшают его абсорбцию.
Транспорт железа осуществляется белком трансферрином, который переносит железо в костный мозг, в места клеточных запасов железа (паренхиматозные органы, мышцы) и во все клетки организма для синтеза ферментов. Железо погибших эритроцитов фагоцитируют макрофаги. Физиологическая потеря железа происходит с калом. Незначительная часть железа теряется с потом и клетками эпидермиса. Общая потеря железа – 1 мг/сут. Также физиологическими считают потери железа с менструальной кровью, с грудным молоком.
Дефицит железа в организме развивается, когда потери его превышают 2 мг/сут. Организм регулирует запасы железа в зависимости от его потребностей путем увеличения его усвоения при прежнем количестве. Кальций, витамины С, В12, кислота желудочного сока, пепсин, медь способствуют усвоению железа, особенно если они поступают из животных источников. Фосфаты, входящие в состав яиц, сыра и молока; оксалаты, фитаты и танины, содержащиеся в черном чае, отрубях, кофе препятствуют усвоению железа. Снижение кислотности желудочного сока в результате продолжительного приема антацидов или препаратов для уменьшения кислотности также сопровождается уменьшением усвоения железа.
Всасываемость железа определяется взаимоотношением трех главных факторов: количеством железа в просвете тонкой кишки, формой катиона железа, функциональным состоянием слизистой оболочки кишечника. В желудке ионное трехвалентное железо переходит в двухвалентную форму. Всасывание железа осуществляется и наиболее эффективно протекает главным образом в двенадцатиперстной и в начальной части тощей кишки. Этот процесс проходит следующие этапы:

Захват клетками слизистой оболочки (ворсинками) тонкого кишечника двухвалентного железа и окисление его в трехвалентное в мембране микроворсинок;
перенос железа к собственной оболочке, где оно захватывается трансферрином и быстро переходит в плазму.

Механизмы регуляции всасывания железа окончательно не выяснены, но твердо установлено, что всасывание ускоряется при его дефиците и замедляется при увеличении его запасов в организме. В дальнейшем, часть железа поступает в депо слизистой оболочки тонкой кишки, а другая – всасывается в кровь, где соединяется с трансферрином. На уровне костного мозга трансферрин как бы «отгружает» железо на мембрану эритрокариоцитов, а проникновение железа внутрь клетки происходит при участии трансферриновых рецепторов, расположенных на мембране клеток. В клетке железо освобождается от трансферрина, поступает в митохондрии и используется в синтезе гема, цитохромов и других железосодержащих соединений. Хранение и запас железа после вхождения его в клетку регулируют железорегуляторные белки. Они связываются с трансферриновыми рецепторами и ферритином; на этот процесс влияют содержание эритропоэтина, уровень запасов тканевого железа, оксид азота, окислительный стресс, гипоксия и реоксигенация. Железорегуляторные белки служат модуляторами метаболизма железа в клетке. В клетках – предшественницах эритропоэза эритропоэтин повышает способность регуляторных белков связываться с трансферриновыми рецепторами, благодаря чему повышается захват железа клетками. При железодефицитной анемии этот процесс активируется в связи с уменьшением запасов железа в депо, гипоксией и повышенным синтезом эритропоэтина.
Факторы, влияющие на поглощение ионного железа:

Факторы органов пищеварения – наиболее важные из них: желудочный сок; термолабильные белки сока поджелудочной железы, препятствующие поглощению органического железа; восстановительные агенты пищи, увеличивающие поглощение железа (аскорбиновая, янтарная и пировиноградная кислота, фруктоза, сорбит, алкоголь) или тормозящие его (бикарбонаты, фосфаты, соли фитовой кислоты, оксалаты, кальций);
эндогенные факторы – количество железа в запасе влияет на скорость его поглощения; высокая эритропоэтическая активность увеличивает поглощение железа в 1,5-5 раз и наоборот; уменьшение количества гемоглобина в крови увеличивает поглощение железа.

Несмотря на относительную легкость диагностики и лечения дефицит железа остается основной проблемой здравоохранения во всем мире. По данным ВОЗ, дефицит железа встречается, как минимум, у каждого 4-го младенца; у каждого 2-го ребенка в возрасте до 4 лет; у каждого 3-го ребенка в возрасте от 5 до 12 лет.
Особенно чувствительны к недостатку железа маленькие дети. Так как железо участвует в построении некоторых структур головного мозга, недостаток его во внутриутробном периоде и у детей первых двух лет жизни приводит к серьезным нарушениям обучаемости и поведения. Эти нарушения очень стойки, возможно, пожизненны. Дефицит железа у плода, новорожденного, в грудном возрасте может привести к нарушению умственного развития, гипервозбудимости в сочетании с синдромом невнимательности, плохой познавательной функцией и задержке психомоторного развития, вследствие функциональной недостаточности миоцитов и замедления миелинизации нервных волокон.
У новорожденных и детей грудного возраста значительную долю среди всех видов анемий занимает железодефицитная анемия (ЖДА). Известно, что единственным источником железа для плода является кровь матери. Поэтому решающую роль в процессах антенатального поступления железа в организм плода играют состояние маточно-плацентарного кровотока и функциональный статус плаценты, при нарушении которых уменьшается поступление железа в организм плода. Непосредственной причиной развития ЖДА у ребенка является дефицит железа в организме, который зависит от обеспеченности плода железом внутриутробно и новорожденного после рождения (экзогенное поступление железа в составе грудного молока или смесей и утилизация железа из эндогенных запасов).
Так как дети первых месяцев жизни быстро растут, у них очень быстро истощаются запасы железа, полученные во внутриутробном периоде. У доношенных детей это происходит к 4-5-му месяцу жизни, а у недоношенных детей уже к 3-му месяцу жизни.
Известно, что кроветворение недоношенных новорожденных с 2,5-3-месячного возраста вступает в железодефицитную фазу с развитием у большинства из них, без дополнительного введения железа, поздней анемии недоношенных, характеризующейся всеми признаками дефицита этого микроэлемента. Развитие анемии в этой возрастной группе объясняется первоначально небольшим депо железа (в результате недостаточных фетальных запасов железа к моменту рождения), большей потребностью в железе в процессе роста и недостаточным его поступлением с пищей. Частота возникновения поздней анемии недоношенных составляет 50-100% и зависит от степени недоношенности, вредных факторов перинатального периода (гестоз, ЖДА беременных II-III степеней, хронические болезни матери, инфекции, перинатальные кровопотери), характера выхаживания и вскармливания, патологии постнатального периода (дисбактериоз, гипотрофия, рахит), а также от своевременности и качества профилактики анемии препаратами железа.
У детей и подростков с дефицитом железа развивается эпителиопатия с нарушением кишечного всасывания и недостаточностью дериватов кожи (плохой рост волос и ногтей). У подростков дефицит железа приводит к нарушениям памяти и социального поведения, снижению интеллектуальных возможностей. Дефицит железа способен вызвать и другие расстройства в состоянии здоровья детей в связи с избирательными эффектами металлоферментов, содержащих Fe, а их известно более 40.
Причины дефицита железа:

Недостаточное поступление (неадекватное питание, вегетарианская диета, недоедание);
снижение всасывания железа в кишечнике;
нарушение регуляции обмена витамина С;
избыточное поступление в организм фосфатов, оксалатов, кальция, цинка, витамина Е;
поступление в организм железосвязывающих веществ (комплексонов);
отравление свинцом, антацидами;
усиленное расходование железа (в периоды интенсивного роста и беременности);
потери железа связанные с травмами, кровопотерями при операциях, обильными менструациями, язвенными болезнями, донорством, занятиями спортом;
гормональные нарушения (дисфункция щитовидной железы);
гастриты с пониженной кислотообразующей функцией, дисбактериоз;
различные системные и опухолевые заболевания;
глистная инвазия.

Основные проявления дефицита железа:

Развитие железодефицитных анемий;
головные боли и головокружения, слабость, утомляемость, непереносимость холода, снижение памяти и концентрации внимания;
замедление умственного и физического развития у детей, неадекватное поведение;
учащенное сердцебиение при незначительной физической нагрузке;
растрескивание слизистых оболочек в углах рта, покраснение и сглаженность поверхности языка, атрофия вкусовых сосочков;
ломкость, утончение, деформация ногтей;
извращение вкуса (тяга к поеданию непищевых веществ), особенно у детей младшего возраста, затрудненное глотание, запоры;
угнетение клеточного и гуморального иммунитета;
повышение общей заболеваемости (простудные и инфекционные болезни у детей, гнойничковые поражения кожи, энтеропатии);
увеличение риска развития опухолевых заболеваний.

При железодефицитной анемии в анализах периферической крови еще до снижения показателей гемоглобина и числа эритроцитов, появляются признаки анизоцитоза (выявляемые морфологически или регистрируемые по увеличению RDV-показателя ширины распределения эритроцитов свыше 14,5%) за счет микроцитоза (снижение показателя MCV – среднего объема эритроцитов, менее 80 фл). Затем выявляется гипохромия (снижение цветового показателя до уровня менее 0,80 или показателя MCH – среднего содержания гемоглобина – менее
27 пг). В амбулаторной практике чаще используется морфологическая характеристика эритроцитов и определение цветового показателя.
Биохимическим критерием ЖДА является снижение уровня сывороточного ферритина до уровня менее 30 нг/мл (норма 58-150 мкг/л). Ферритин – растворимый в воде комплекс гидроокиси железа с белком апоферритином. Он находится в клетках печени, селезенки, костного мозга и ретикулоцитах. Ферритин является основным белком человека, депонирующим железо. Хотя в крови ферритин присутствует в небольших количествах, его концентрация в плазме отражает запасы железа в организме. Определение ферритина в сыворотке используется для диагностики и мониторинга дефицита или избытка железа, дифференциальной диагностики анемий. Другие показатели, такие как сывороточное железо, железосвязывающая способность сыворотки, коэффициент насыщения трансферрина и др., менее чувствительны, лабильны и поэтому недостаточно информативны.
Лечение анемии у детей должно быть комплексным и базироваться на нормализации режима и питания ребенка, возможной коррекции причины железодефицита, назначении препаратов железа, сопутствующей терапии. При ЖДА препараты железа назначают обычно внутрь, и лишь при заболеваниях, сопровождающихся нарушением всасывания или выраженных побочных явлениях, показаны внутримышечные или внутривенные инъекции лекарств. Длительность курса лечения составляет от 3 до 6 мес в зависимости от степени тяжести анемии. Такое длительное лечение необходимо, потому что восстановление запасов железа происходит медленно, уже после нормализации уровня гемоглобина. Суточная доза препаратов железа подбирается в соответствии с массой тела и возрастом ребенка, степенью тяжести дефицита железа. Учитывая длительность лечения, важно, чтобы препараты железа имели: хорошую переносимость, достаточную степень усвоения, эффективность.
Современные препараты железа, используемые в детской практике, делятся на 2 группы: препараты, содержащие соли железа (сульфат, хлорид, фумарат, глюконат) и препараты на основе полимальтозного комплекса. Следует отметить, что при применении препаратов солей железа возможны побочные эффекты со стороны желудочно-кишечного тракта (тошнота, рвота, боль в животе, нарушения стула), а также окрашивание зубов и/или десен.
Препараты, представляющие собой неионные соединения железа на основе гидроксид-полимальтозного комплекса трехвалентного железа, относятся к высокоэффективным и безопасным препаратам железа. Структура комплекса состоит из многоядерных центров гидроксида Fe (III), окруженных нековалентно связанными молекулами полимальтозы. Комплекс имеет большой молекулярный вес, что затрудняет его диффузию через мембрану слизистой кишечника. Химическая структура комплекса максимально приближена к структуре естественных соединений железа с ферритином. Абсорбция железа в виде ГПК имеет принципиально иную схему по сравнению с его ионными соединениями и обеспечивается поступлением Fe (III) из кишечника в кровь путем активного всасывания. Из препарата железо переносится через щеточную каемку мембраны на белке-переносчике и высвобождается для связывания с трансферрином и ферритином, в блоке с которыми депонируется и используется организмом по мере необходимости. Физиологические процессы саморегуляции полностью исключают возможность передозировки и отравления. Существуют данные, свидетельствующие о том, что при насыщении организма железом его резорбция прекращается по принципу обратной связи. Основываясь на физико-химических особенностях комплекса, в частности, на том, что активный транспорт железа осуществляется по принципу конкурентного обмена лигандами (их уровень определяет скорость абсорбции железа), доказано отсутствие его токсичности. Неионная структура комплекса обеспечивает его стабильность и перенос железа с помощью транспортного белка, что предотвращает в организме свободную диффузию ионов железа, т.е. прооксидантные реакции. Взаимодействия гидроксид-полимальтозного комплекса Fe3+ с компонентами пищи и лекарственными препаратами не происходит, что позволяет использовать неионные соединения железа, не нарушая режим питания и терапии сопутствующей патологии. Побочные эффекты практически не встречаются при использовании препаратов нового поколения (гидроксид-полимальтозный комплекс) и, как показали клинические испытания, проведенные в России и за рубежом, они эффективны, безопасны, лучше переносятся детьми.
В раннем детском возрасте, когда необходимо длительное, в течение нескольких недель и месяцев, введение лекарственных средств, абсолютное предпочтение отдается специальным детским формам препаратов. Из имеющихся на отечественном рынке ферропрепаратов вызывает интерес Мальтофер. Препарат представляет собой комплексное соединение гидроксида трехвалентного железа с полимальтозой. Мальтофер выпускается в форме жевательных таблеток, сиропа и капель, что делает его удобным в применении в любом возрасте, в том числе и у новорожденных. Жидкая консистенция препарата обеспечивает максимальный контакт с абсорбирующей поверхностью кишечных ворсинок. Эффективность и безопасность препаратов на основе ГПК трехвалентного железа, разработанного Швейцарской фирмой «Вифор» Интернэшнл, Инк., продемонстрированы в более чем 60 рандомизированных исследованиях.
Препарат Мальтофер показан с младенческого возраста для коррекции железодефицитного состояния (прелатентного и латентного) и лечения ЖДА, обусловленной кровопотерями, алиментарного происхождения, при повышенных потребностях организма в железе в период интенсивного роста. Железодефицитные состояния характеризуются изолированной сидеропенией без снижения уровня гемоглобина и являются функциональными расстройствами, предшествующими развитию ЖДА. Препарат назначается в детском возрасте внутрь, во время или сразу после еды, капли допустимо смешивать с фруктовыми и овощными соками или с искусственными питательными смесями, не опасаясь снижения активности препарата. Дозировка и сроки лечения зависят от степени недостатка железа. Суточная доза может быть разделена на несколько приемов или принята однократно.
Клиническая эффективность препарата высока и приближается к 90%. Восстановление уровня гемоглобина при легкой и среднетяжелой анемии достигается уже к третьей неделе терапии. Однако критерием излечения ЖДА является не столько повышение уровня гемоглобина, сколько ликвидация дефицита железа в организме, ликвидация сидеропении. Поэтому критерием излечения является восстановление нормального уровня ферритина сыворотки. По данным исследователей, при использовании препарата Мальтофер сывороточный ферритин восстанавливается до нормальных значений к 6-8-й неделе терапии. Мальтофер хорошо переносится и не вызывает серьезных побочных реакций. Возможны небольшая диспепсия и изменение окраски кала (обусловлена выведением невсосавшегося Fe и не имеет клинического значения).
Таким образом, Мальтофер представляет собой современный антианемический препарат, обеспечивающий физиологические потребности организма в железе, а также максимальный терапевтический эффект и высокую безопасность при лечении железодефицитной анемии у взрослых и детей. Многообразие форм делает препарат Мальтофер очень удобным для использования, особенно в гематологической педиатрической практике.
Значимость проблемы железодефицитной анемии у детей обусловлена ее большой распространенностью в популяции и частым развитием при различных заболеваниях, что требует постоянной настороженности врачей любых специальностей. Тем не менее, на современном этапе в арсенале врача имеется достаточно диагностических и лечебных возможностей для раннего выявления и своевременной коррекции анемии у детей.

Рекомендуемая литература
1. Анемии у детей. Диагностика, дифференциальная диагностика, лечение. Н.А.Финогенова и др. М.: МАКС Пресс, 2004; 216.
2. Дефицит железа и железодефицитная анемия у детей. М.: Славянский диалог, 2001.
3. Казюкова Т.В., Самсыгина Г.А., Калашникова Г.В. и др. Новые возможности ферротерапии железодефицитной анемии. Клиническая фармакология и терапия. 2000; 9: 2: 88-91.
4. Коровина Н. А., Заплатников А. Л., Захарова И. Н. Железодефицитные анемии у детей. М.: 1999.
5. Соболева М.К. Железодефицитная анемия у детей раннего возраста и кормящих матерей и ее лечение и профилактика Мальтофером и Мальтофером-Фол. Педиатрия. 2001; 6: 27-32.
6. Block J., Halliday J.et al. Iron Metabolism in Health and Disease.­­ W. B. Saunders company, 1994.
7. Maltofer, Product Monograph, 1996. Vifor (International) Inc.75 pp.

АНЕМИИ

Дефицит железа в организме человека является довольно частым состоянием и выявляется по данным многочисленных авторов у 10-20% населения. Особенно часто дефицит железа обнаруживается у женщин в репродуктивном периоде, достигая 30%. Клинически значимые проявления в виде гипохромной анемии выявляются в 2-3 раза реже. Развитие анемии характеризует значительное истощение содержания железа в организме и отражает несвоевременную коррекцию при выявлении факторов риска его дефицита. Своевременное выявление железодефицитных состояний позволит не допустить их прогрессирование с развитием гипохромных анемий.

Следует отметить, что гипохромия не является достоверным свидетельством дефицита железа в организме. Около 10% гипохромных анемий являются следствием других состояний, не связанных с дефицитом железа, при которых назначение препаратов железа не только не эффективно, но и оказывает повреждающее действие в виде сидероза внутренних органов.

ОБМЕН ЖЕЛЕЗА В ОРГАНИЗМЕ

Общее содержание железа в организме человека зависит от антропометрических данных и пола – вариации ОЦК, мышечной массы, объёма естественных потерь. Обычно у женщин содержание железа на 500-800 мг меньше чем у мужчин. Учитывая некоторые различия в количественной трактовке содержания железа в организме, мы приводим усреднённые данные, отражающие принципиальные процессы обмена железа в организме.

У мужчины весом 70 кг общее содержание железа в организме составляет 4,2 гр. Почти всё железа входит в состав различных белков, что позволяет выделить его различные фрагменты.

1.Гемовое железо составляет 3 г. или около 70% общего содержания железа в организме. В свою очередь оно подразделяется на:

А) железо гемоглобина – 2,6 г;

Б) железо миоглобина – 0,4 г.

2. Запасное железо – 1,0-1,2 г.

3. Транспортное железо – 20-40 мг.

4. Ферментативное (внутриклеточное) - 20-40 мг.

ГЕМОВОЕ ЖЕЛЕЗО

Гемоглобин осуществляет перенос кислорода от лёгких к тканям. Гемоглобин является сложной трёхкомпонентной структурой, подразделяющейся на белковую часть – глобин и гемм, состоящий из 4 пирольных колец, соединённых друг с другом в кольцо протопорфирина (порфирин 111) и молекулы железа. Одна молекула гемоглобина содержит 4 гемма. На долю железа приходиться 0,35%, на долю гемма – 3,5% и глобина 96% от общей массы гемоглобина А, поэтому периферические эритроциты в 100 мл крови содержат около 50 мг железа.

В эритроците происходит синтез протопорфирина, превращающегося в гемм после включения железа, затем присоединяется глобиновый комплекс. По мере синтеза гемма содержание протопорфирина в эритроците прогрессивно снижается. Синтез гемоглобина начинается на стадии превращения базофильного нормоцита в полихроматофильный. Излишек железа, не вошедший в состав гемоглобина, включается в ферритиновый комплекс, представляющий собой запасное железо (депо), что обнаруживается при окраске берлинской лазурью в виде сидеробластов и сидероцитов.

В норме для эритропоэза используется главным образом железо, высвобождающееся при макрофагальном фагоцитозе стареющих эритроцитов. Железо макрофагов захватывается плазменным трансферрином, который перемещает его в костный мозг, где оно используется для синтеза гемоглобина. Ежедневно разрушается 0,8-1% эритроцитов (длительность жизни 100-120 дней), что аналогично 45 мл крови, с высвобождением 22-25 мг железа. Плазменный трансферрин, нагруженный железом, связывается в костном мозге с рецепторами на поверхности эритроцитов и поглощается. Как только железо включается в синтез гемоглобина, трансферрин-рецепторный комплекс снова возвращается на поверхность клетки, трансферрин высвобождается и снова включается в транспортный цикл, то есть промежуточный обмен железа в основном связан с процессами синтеза и распада гемоглобина. Суточный расход железа на синтез гемоглобина составляет 20-22 мг в сутки.

Миоглобин также является гемосодержащим протеином, обеспечивающим поступление кислорода в миоциты адекватно их метаболической активности. В отличие от гемоглобина он содержит одну молекулу гемма с одним атомом железа. Различаются «красные» мышцы с высоким содержанием миоглобина, постоянно работающие, и соответственно с большим потреблением кислорода. К ним относятся антигравитационная поперечно-полосатая мускулатура, сердечная мышца, гладкая мускулатура внутренних органов (прежде всего сфинктеры), сосудистой стенки. Локомоторные мышцы относятся к «белым» с меньшим содержанием миоглобина.

ЗАПАСНОЕ ЖЕЛЕЗО

Запасное железо (депо) представлено в виде белково-железистых комплексов: ферритина и гемосидерина. В депо откладывается железо не вошедшее в синтез гемоглобина и железосодержащих ферментов. Белок апоферритин связывает свободное двухвалентное железо и депонирует его в виде трёхвалентного, превращаясь в ферритин. На долю железа ферритина, находящегося в печени, приходится 600-700 мг, в мышцах содержится 400-600 мг ферритина. Железо в виде ферритина содержиться также в макрофагах костного мозга, эритрокариоцитах, селезёнке. В макрофагах ферритин может быть превращён в гемосидерин. Железо ферритина быстро используется для синтеза гемма (лабильное депо), в то время как железо гемосидерина гораздо медленнее включается в метаболизм.

Сывороточный ферритин находится в равновесии с содержанием ферритина в тканях и отражает величину запасов железа в организме. В норме концентрация сывороточного ферритина составляет от 20 до 250 мкг/л.

Качественным методом, характеризующим содержание железа депо, является окрашивание берлинской лазурью макрофагов пунктата или биопата костного мозга, выявляющее внутриклеточные гранулы ферритина и гемосидерина. Аналогичные включения ферритина, не израсходованные на синтез гемоглобина, содержатся в норме в 40-60% эритрокариоцитов, обозначаемых как сидеробласты. При окраске периферической крови включения ферритина выявляются в 10-20 эритроцитах – сидероциты. Количество сидеробластов менее 20% и сидероцитов менее 10% свидетельствует о дефиците запасного железа.

ТРАНСПОРТНОЕ ЖЕЛЕЗО

Трансферрин – транспортный белок железа (из фракции бета-глобулинов) синтезируется в печени, производящей 15-20 мг трансферрина на 1 кг массы тела. Сывороточная концентрация трансферрина составляет в среднем от 2,3 г/л у женщин и 3 г/л у мужин до 4 г/л. Одна молекула трансферрина связывает две молекулы трёхвалентного железа. Трансферрин способен связать ионы других металлов (цинка, кобальта). Только 30-50 % трансферрина содержит железо (коэффициент насыщения трансфкррина). Коэффициент насыщения трансферрина железом рассчитывается исходя из концентрации трансферрина в крови и сывороточного железа. Коэффициент насыщения трансферина является производным от деления концентрации сывороточного железа в мг/л на концентрацию сывороточного трансферрина в г/л, умноженным на 100. В норме он составляет 30-55%. При дефиците железа наблюдается снижение концентрации сывороточного железа при увеличении концентрации трансферрина, что ведёт к уменьшению процента насыщения трансферрина и является достоверным признаком железодефицитного состояния.

Косвенным показателем концентрации трансферрина может служить общая железо связывающая способность сыворотки (ОЖСС), так как около половины транспортного железа может быть связано с другими белками плазмы крови. На долю трансферрина, в зависимости от процента насыщения, приходится 6-8 мг железа. Под ОЖСС понимают не абсолютное количество трансферрина, а количество железа, которое может связать трансферрин при его недонасыщенности. В норме ОЖСС составляет 54-72 мкмоль/л.

Показатели сывороточного или диссоциированного железа менее диагностичны и дают лишь косвенное представление о количестве железа, транспортируемого плазмой. Возможно его увеличение при некротических процессах в тканях (печёночный, мышечный цитолиз), снижение при воспалительных процессах. Нижняя граница концентрации сывороточного железа в норме составляет для женщин 9,0 и для мужчин – 11,5 мкмоль/л.

Вычитая из ОЖСС железо сыворотки определяют латентную или ненысыщенную ЖСС, составляющую в норме в среднем 50 мкмоль/л. Производное от деления железа сыворотки на ОЖСС, выраженное в процентах, характеризует коэффициент насыщения железом крови, составляющий в среднем 30%.

Сывороточный трансферрин играет ключевую роль в промежуточном обмене железа в организме. Он поставляет железо эритрону для синтеза гемоглобина (22-24 мг в сутки) прежде всего из макрофагов, осуществляющих лизис эритроцитов, в меньшем количестве поступающее при распаде миоглобина и железо содержащих ферментов. Трансферрин осуществляет транспорт пищевого железа из энтероцитов, восполняющего естественную потерю его из организма. Он же осуществляет транспорт железа из депо при избыточной его потере и восполняет дефицит запасов при его поступлении (лекарственном, пищевом), превышающем потребность.

ФЕРМЕНТАТИВНОЕ ЖЕЛЕЗО

Менее 1% железа организма (около 40 мг) находится в виде железосодержащих ферментов внутриклеточной дыхательной цепи и окислительно-восстановительных ферментов: цитохромы, железосеропротеины, оксидазы, гидроксилазы, супероксиддисмутазы и др.

ВСАСЫВАНИЕ ЖЕЛЕЗА

При полноценной диете с пищей поступает 15-20 мг железа у мужчин и 10-15 мг у женщин. Основное значение в всасывании железа имеет мясная пища, содержащее гемовое железо (миоглобин, гемоглобин) и ферритин – телятина, говядина, печень и в меньших количествах мясо птицы и рыбы. Растительная пища (овощи, злаки) имеет меньшее значение, так как содержит фосфаты и фитаты, препятствующие всасыванию железа. Аскорбиновая кислота (цитрусовые), органические кислоты, лактоза, фруктоза, сорбит увеличивают всасывание железа. Соляная кислота увеличивает всасывание трёхвалентного железа, не влияя на всасывание гемового железа, поэтому ахилия ограничивает всасывание пищевого железа не более чем на 0,5 мг/сутки.

Железо всасывается в 12 перстной и тощей кишке. Всасывание пищевого железа лимитированные процесс, обусловленный содержанием мукозного апотрансферрина, секретируемого энтороцитами проксимальных отделов тонкой кишки. Мукозный апотрансферрин, располагаясь на поверхности энтероцитов, захватывает пищевое железо, превращаясь в мукозный трансферрин, который проникает обратно в энтероцит. Там он отдаёт железо своему плазменному аналогу, вновь превращаясь в апотрансферрин, способный снова захватить железо из кишечного содержимого. При предельном насыщении плазменного трансферрина высвобождение мукозного апотрансферрина не происходит и всасывание железа прекращается. Истощение содержания железа в организме и снижение насыщения плазменного трансферрина ведёт к большому захвату железа из энтероцитов с высвобождением большего количества мукозного апотрансферрина и большему всасыванию железа, то есть всасывание лимитируется белковотранспортной ёмкостью мукозного апоферритина. Таким образом, пищевого железа всасывает столько, сколько железа теряется из организма, но не более 2-2,5 мг в сутки. Даже избыточное употребление мяса не может привести к перенасыщению организма железом.

Небольшое количество железа превращается в энтероцитах в ферритин, что обуславливает потерю с калом в сутки 0,6 мг железа из-за постоянного слущивания эпителия кишечника.

Суточная естественная потеря железа у мужчин составляет 1 мг в сутки: кал (эпителий, желчь), слущивание эпителия кожи и слизистых, волосы (дефицит чаще у рыжих), ногти, моча, пот. У 80-70% женщин репродуктивного периода выведение железа из организма составляет 1,5-1,8 мг в сутки за счёт дополнительной кровопотери в период месячных, что соответствует 15-25 мг железа или до 50 мл крови в месяц. Такое же количество железа усваивается из пищи.

ЭРИТРОПОЭЗ

Родоначальницей эритропоэза взрослого человека является морфологически не идентифицируемая унипотентная стволовая клетка КОЕ-Э – колоний образующая эритроцитарная единица эритропоэза, пролиферативная активность которой регулируется посредством секреции эритропэтина (эритропоэтино чувствительная). Первым морфологически распознаваемым предшественником эритропоэза является эритробласт, последовательно дифференцирующийся в пронормоцит и нормоциты. Существуют некоторые разночтения в обозначении распознаваемых элементов эритропоэза. Мы придерживаемся терминологией, предложенной в руководстве по гематологии под редакцией А.И.Воробьёва. В скобках даны синонимы.

Первым морфологически идентифицируется эритробласт (проэритробласт), последовательно дифференцирующийся в пронормоцит (пронормобласт), а затем в нормоциты (эритробласты), различающиеся по степени гемоглобинизации и соответственно окраски цитоплазмы на базофильные, политохромофильные и оксифильные. Синтез гемоглобина начинается на стадии полихроматофильных нормоцитов и завершается на стадии оксифильных. С началом гемоглобинизации цитоплазмы происходит инволюция ядра. Последним делящимся является полихроматофильный нормоцит. На стадии оксифильного нормоцита клетка лишается ядра, превращаясь в ритикулоцит с остаточной ядерной субстанцией в виде сеточки (ретикулум). До выхода на периферию ретикулоциты 2-4 дня задерживаются в костном мозге, где в основном окончательно теряют ретикулум, превращаясь в зрелый эритроцит. Цикл превращения эритробласта в эритроцит занимает в среднем 5-7 суток.

Эритроцит человека в норме имеет двояковогнутую, дискоидную форму, обеспечивающую большую диффузионную поверхность, Поверхностный цитоскелет эритроцита обеспечивает его высокую способность к деформации. За 100-120 дней циркуляции снижается стойкость эритроцита к деформации и осмотическому лизису, что и обуславливает макрофагальный фагоцитоз стареющих эритроцитов в селезёнке.

Размеры нормальных эритроцитов человека изменчивы, но можно установить пределы средних колебаний. Диаметр эритроцитов составляет 7,5-8,3 мкм, толщина 2,1 мкм, что и определяет средний объём эритроцитов в пределах 86-101 .

Средний объём рассчитывается исходя из числа эритроцитов и гематокрита.

Количественное соотношение эритроцитов разных объёмов выражается графически – эритроцитметрия (кривая распределения Прайс-Джонса). На абсциссе (горизонтальная линия) отмечаются объёмы эритроцитов, а на ординате (вертикальная линия) процентное распределение эритроцитов в зависимости от объёма. Пик кривой характеризует объём преобладающей популяции эритроцитов. Нередко нормальная средняя величина отражает суммацию клонов эритроцитов, различающихся по объёму вследствие неодинаковой активности клонов по захвату железа и витамина В12. В этом случае отмечается уширение основания кривой, отражающее присутствие эритроцитов разных объёмов (анизоцитоз). Сдвиг к меньшим объёмам указывает на присутствие микроцитов, к большим объёмам – макроцитов. Микроцитоз отражает активацию эритропоэза эритропоэтином, характерную для дефицита железа.

Эритропоэз регулируется эритропоэтином, вырабатываемым главным образом в перитубулярных интерстициальных клетках внутренней части коркового и наружной мозгового вещества почек. Предполагается основная локализация эритропоэтин продуцирующих клеток в юкстагломерулярном треугольнике, контактирующим с артериолоами и дистальным канальцем.Небольшое количество эритропоэтина синтезируется в печени. Концентрация эритропоэтина в норме поддерживается на определённом для каждого человека уровне, что определяет индивидуальные колебания эритроцитов и гемоглобина.

Эритропоэтин активирует пролиферацию и дифференцировку клеток эритроцитарного ростка. Физиологическим стимулом, увеличивающим синтез эритропоэтина, является гипоксемия – снижение кислородной ёмкости крови при анемии, дыхательная недостаточность, высотная гипоксия. Повышение секреции эритропоэтина обычно наблюдается при уровне гемоглобина 100 г/л и ниже. Существует обратная отрицательная связь – снижение секреции эритропоэтина при эритроцитозах.

Провоспалительные цитокины: фактор некроза опухоли, интерлейкин-1, интерферон – подавляют секрецию эритропоэтина и пролиферацию клеток эритроидного ряда. Кроме того, снижается поступление железа к эритрону из макрофагов, основного источника транспортного железа, что обуславливает гипохромную анемию при воспалительных процессах при нормальном содержании железа в организме.

Развитие дефицита железа в организме, учитывая большой объём его депо в норме, представляет собой, как правило, хронический процесс. Острота возникновения железодефицитной анемии в большинстве случаев является лишь кажущейся, так как часто имеет длительную и нередко комплексную предысторию в виде факторов риска, формирующих истощение запасов железа в организме. Классификация железодефицитных состояний служит не только основой диагностического поиска при уже выявленной анемии, но и диктует необходимость определения показателей обмена железа в организме при факторах риска его дефицита для своевременной коррекции до развития анемии. Таким образом, анемия является финалом истощения запасов железа в организме.

Дефицит железа в организме формируется в основном в результате двух процессов – избыточная потеря, превышающая лимит всасывания, и ограничение всасывания. Часто наблюдается сочетание обоих факторов формирования дефицита.

КЛАССИФИКАЦИЯ ЖЕЛЕЗОДЕФИЦИТНЫХ СОСТОЯНИЙ

(Анемий)

    Хронические постгеморрагические:

    маточные кровотечения;

    кровотечения из органов ЖКТ;

    геморрагические диатезы;

    почечные кровотечения;

    лёгочные кровотечения;

    кровотечения других локализаций.

    Беременность.

    Врождённый дефицит железа.

    Нарушения всасывания.

    Пищевой дефицит

Менструации (физиологическая кровопотеря) при нормальном балансе железа в организме не могут привести к его дефициту. Однако 10-20% женщин репродуктивного периода теряют за период месячных более 40 мг железа (более 70 мл крови) и около 5% - более 45 мг (более 90 мл крови). То есть, в пересчёте на суточную, потеря железа составит 2-2,5 мг/сутки. Учитывая другие естественные пути выведения железа из организма (0,7-1 мг/сутки), общая потеря железа достигает 2,7-3,5 мг/сутки, что превышает лимит всасывания на 0,5-1 мг/сутки. Таким образом, в течение 5-10 лет, иногда и более, происходит полное истощение запасов железа в организме.

Метроррагии (маточные кровотечения вне цикла) могут привести, учитывая больший объём кровопотери, к дефициту железа и в более короткие сроки.

Эндомитриоз – эктопически распложенные полости, выполненные эндометрием. При расположении эндомитриозной полости в теле матки, других органах кровотечения в период месячных (отторжение эндометрия) происходят в замкнутое пространство без реутилизации железа, что увеличивает его потерю без видимых кровотечений. У части женщин эндомитриозная полость сообщается с полостью матки, обуславливая гиперполименоррею. При её локализации в бронхах, кишечнике возникают наружные кровотечении\ (лёгочные, кишечные), совпадающие с периодом месячных.

У мужчин и неменструирующих женщин самыми частыми причинами дефицита железа являются кровотечения из желудочно-кишечного тракта, что требует обязательного детального обследования: эзофаго-гастро-дуоденоскопия, колоноскопия.

Кровопотери из органов ЖКТ имеют разную локализацию, нередко трудно идентифицируемую. Видимые кровотечения (гематомезис, милена) возникают при объёме излившейся крови, превышающей 100 мл/сутки. Анализ кала на скрытую кровь выявляет кровопотерю, превышающую 30 мл/сутки (реакция Вебера с бензидином) или 15 мл/сутки (реакция Грегерсена с гваяковым реактивом) и не являются специфичными. Более чувствительны иммунохимические («Гемоселект») и радиологические (эритроциты меченные хромом) методы, выявляющие кровопотерю более 2 мл/сутки.

Источниками пищеводных кровотечений являются: варикозно расширенные вены пищевода при портальной гипертензии (нередко диапедезные), рецидивирующие эрозии при рефлюкс-эзофагите, рецидивирующий синдром Малори-Вейса, опухоли.

Атрофический гастрит без эрозий не может рассматриваться как причина дефицита железа, так как отсутствие соляной кислоты снижает всасывание железа лишь на 0,5 мг/сутки. Снижение желудочной секреции может лишь способствовать дефициту железа при избыточной его потере.

Значимыми в плане развития железодефицитных состояний являются: грыжи пищеводного отверстия диафрагмы, обострения язвенной болезни, хронический эрозивный гастрит, злокачественные и доброкачественные опухоли.

Источниками кровопотери могут быть злокачественные и доброкачественные опухоли кишечника (преимущественно толстого), дивертикулы (дивертикул Меккеля) с воспалением и эрозиями в них, болезнь Крона, язвенный колит, геморрой.

Кровотечения при геморрагических диатезах чаще имеют органную направленность: наружные, гематомные - при гемофилиях; желудочно-кишечные, маточные - при тромбоцитопениях; слизистые полости рта, носа, бронхов - при болезни Рендю-Ослера.

Почечные потери железа из организма наблюдаются как при частых рецидивах макрогематурии (гематурическая форма хронического гломерулонефрита – болезнь Берже, МКБ, опухолевые процессы почек и мочевыводящих путей), так и при гемоглобино- и гемосидеринуриях, сопровождающих внутрисосудистый гемолиз (гемолитические анемии, болезнь Маркиафавы-Микели).

Помимо рецидивирующих, наружных лёгочных кровотечений (туберкулёз, бронхоэктатическая болезнь, опухоли) значительно реже потеря железа происходит при диапедезе эритроцитов в лёгочную ткань. Лёгочные макрофаги, высвобождая железо, откладывают его в виде гемосидерина без последующей утилизации. Данный механизм присутствует при идиопатическом лёгочном сидерозе, синдроме Гудпасчера.

Возможно развитие дефицита железа при рецидивирующих носовых кровотечениях, систематическом донорстве, глистных инвазиях (анкилостомидоз), чрезмерном потоотделении.

Во время беременности и в послеродовом периоде происходят следующие процессы, повышающие потребность в железе.

    Внутриутробная передача железа в депо плода, составляющая 400-600 мг в зависимости от многоплодия и сроков беременности.

    Увеличение ОЦК во 2-3 триместр беременности за счёт плацентарного кровотока, требующая 400-500 мг железа (обратимая потеря).

В период беременности суточная потребность в железе достигает 5-8 мг/сутки, что значительно превышает суточное пищевое поступление (2-2,5 мг) и ведёт к мобилизации железа депо.

    Кровотечение в родах, объём крови в плаценте – 50-100 мг.

    Лактация, определяющая потерю 150-200 мг железа.

Таким образом, в период беременности, родов и лактации женщина необратимо теряет из организма 700-800 мг железа. Одна беременность и лактация без предшествующего дефицита железа не приводят к существенному истощению его запасов и в последующем компенсируется пищевым железом в течение 1,5-2 лет. Последующие через короткий срок беременности, особенно при многоплодии, ведут к нарастающему дефициту железа. Первая беременность, протекающая на фоне скрытого дефицита железа, может сразу привести к развитию гипохромной анемии. Всем женщинам, планирующим беременность, особенно с факторами риска дефицита железа, необходимо определение показателей железа депо (сывороточный ферритин) и транспортного (ОЖСС, сывороточное железо) для своевременной пищевой и лекарственной коррекции.

Врождённый дефицит железа в организме детей, матери которых имели дефицит железа в беременность. Причина дефицита обусловлена сниженным поступлением железа в депо плода из крови матери и меньшим содержанием железа в молоке матери. Риском развития дефицита железа может являться многоплодие, недоношенность. У детей, в отличие от взрослых всасывание железа при его дефиците не увеличивается, а уменьшается, так как для усвоения пищевого железа (молоко матери)требуются ферменты кишечника, также содержащие железо.

Значительный дефицит железа обычно проявляется уже в младшем возрасте, в период ускоренного роста и связан с повышенной в нём потребностью (увеличение ОЦК, мышечной массы). Чаще это происходит у девочек в возрасте 5-8 лет и у мальчиков – 6-10 лет. Развитию анемии предшествует сидеропенический синдром.

Латентный дефицит железа обычно проявляется у девушек с появлением месячных, повышающих потребность в железе – ювенильный хлороз. У юношей в период полового созревания увеличение андрогенов активирует всасывание железа и эритропоэз.

Пищевой дефицит. Существенную роль в развитии дефицита железа, особенно у женщин, играет вегетарианство. Ограничивают всасывание железа продукты, содержащие кальций (молоко и молочные продукты), препараты кальция, кофе, чай.

Снижение всасывания железа с развитием его дефицита наблюдается при хронических энтеритах, резекции тощей кишки и, как правило, является одним из проявлений общего синдрома нарушенного всасывания. Характерно сочетание с поносами, гипопротеинемией и гипохолестеринемией. Нередко анемия имеет сочетанный генез за счёт развития дефицита В12 и фолиевой кислоты.

При анализе этиологических факторов дефицита железа в организме часто выявляется комплекс причин, каждая из которых может не достигать значимой выраженности: гиперменоррагии на фоне неполноценного питания или врождённого дефицита; беременность при неполноценном питании или нарушении всасывания; грыжа пищеводгого отверстия диафрагмы с хроническим атрофическим гастритом и нарушенным всасыванием; эндометриоз и вегетарианство; незначительное опухолевое кровотечение (чаще в толстой кишке) на фоне исходного дефицита железа. Указанное диктует необходимость детального обследования больных на предмет выявления всех этиологических факторов, не останавливаясь на одно, двух установленных.

Развитие дефицита железа, учитывая большой запас его в норме, чаще всего длительный процесс, позволяющий выявить ряд этапов его формирования. Выделяются прелатентный и латентный периоды, предшествующие развитию гипохромной, микроцитарной анемии. Указанное обусловлено главенствующей ролью железа эритрона – гемоглобина, обеспечивающего захват кислорода и его транспорт к тканям.

При несоответствии поступления пищевого железа потребностям в нём организма вначале происходит мобилизация железа депо с постепенным его истощением, что обозначается как прелатентный дефицит железа. Прелатентный дефицит железа необходимо выявлять у лиц, имеющих факторы риска его развития, так как общеклинические проявления отсутствуют.

Диагностика прелатентного периода основывается прежде всего на снижении сывороточного ферритина(ниже 20 мкг/л). Установление снижения содержания железа в макрофагах костного мозга при окраске берлинской лазурью, как правило, не проводится и имеет скорее теоретическое значение. Однако, учитывая главенствующую роль эритрона в захвате транспортного железа, количество сидеробластов (40-60%) и сидероцитов (10-20%) находиться в пределах нормы. В этот период запасы железа в организме не превышают 100-300 мг. Особую важность выявление этого периода имеет при предполагаемой беременности, когда резко возрастёт потребность в железе, обуславливая дефицит его у плода. Пока депо железа значительно не истощено показатели транспортного железа сохраняются в пределах нормы, анемия отсутствует, гипохромии и повышения протопорфирина (норма 30-50 мкг%) в эритроцитах нормального объёма – нет.

При дальнейшем истощении запасов железа развивается латентный период. Железо в макрофагах костного мозга не определяется, количество сидеробластов – менее 20% и сидероцитов – менее 10%. Происходит дальнейшее снижение сыворточного ферритина (менее 15 мкг/л). Истощение железа депо ведёт: к снижению насыщения трансферрина (менее 30%) и соответственно к увеличению общей (более 70 мкмоль/л) и латентной (более 80 мкмоль/л) ЖСС. Концентрация сывороточного железа падает ниже 9,5 мкмоль/л у женщин и 11 мкмоль/л – у мужчин. Концентрация гемоглобина чаще находится в пределах 100-120 г/л.Этот период не сопровождается повышением синтеза эритропоэтина и интенсификацией эритропоэза, поэтому микроцитоз и гипохромия не выявляются. Возможно лёгкая анемия нормоцитарного, нормохромного характера, так как активность эритропоэза снижается из-за недостатка железа, необходимого для синтеза гемма. В эритроцитах выявляется избыток протопорфирина, не включённого в гемм (более 100 мкг%). В этот же период снижается синтез миоглобина и уменьшается количество железосодержащих внутриклеточных окислительно-восстановительных ферментов, что сказывается прежде всего на регенерации и функции эпителия. Латентный период прявляется в комплексе клинических проявлений, обозначаемых как сидеропенический синдром.

Дальнейшее истощение содержания железа ведёт к развитию железодефицитной анемии разной степени тяжести с появлением циркуляторно-гипоксического синдрома. Интенсификация эритропоэза эритропоэтином сначала ведёт к микроцитозу (снижение МСУ), а затем и к их гипохромии (снижение МСН) при гемоглобине ниже 100 г/л. Выявляется дальнейшее снижение сывороточного ферритина (ниже 10 мкг/л), насыщения трансферрина (ниже 10%), увеличение общей (более 75 мкмоль/л) и латентной (более 70 мкмоль/л) ЖСС. Концентрация протопорфирина в эритроцитах превышает 200 мкг%.

← + Ctrl + →
Глава 6. Эритроциты Глава 7. Система гемостаза

Обмен железа

Железо является одним из основных по значению микроэлементов организма. Почти все железо входит в состав различных белков. Из них наиболее важен гемоглобин, функция которого - перенос кислорода от легких к тканям. Гемоглобин состоит из небелковой части - гема, и белковой части - глобина. В молекуле гема железо связано с протопорфирином. Гем не только входит в состав гемоглобина, он содержится в миоглобине, цитохромах, входит в состав каталазы, лактопероксидазы. Основной белок, содержащий железо и не имеющий гемовой группы, - ферритин. Он содержит железо запасов. Железо входит и в состав производного ферритина - гемосидерина. Не содержит группы гема белок трансферрин, переносящий железо. Железо в негемовой форме есть в ряде ферментов (аконитазе, ксантиноксидазе). Основное количество железа в организме (57,6%) входит в состав гемоглобина и содержится в эритроцитах.

Значительное количество железа есть в мышцах (27,6%). Большая часть этого железа входит в состав ферритина (68,1% железа мышц), остальная часть включена в миоглобин (21,9%). В печени откладывается 7,8% железа организма. Железо печени в основном входит в состав ферритина и гемосидерина.

Трансферрин - белок плазмы крови, относящийся к глобулинам. Он имеет 2 активных участка, каждый из которых может связать по одному атому железа в трехвалентной форме. Основной синтез трансферрина у людей происходит в печени. За сутки производится 12-24 мг трансферрина на 1 кг массы, т. е. 5-9% всего количества этого белка.

Содержание железа в организме зависит в основном от его всасывания. Выделение железа из организма - процесс, недостаточно регулируемый. Существует сложный механизм, препятствующий всасыванию избыточного количества железа. Хотя теоретически весь кишечник, включая толстую кишку, способен всасывать железо, основное количество железа всасывается в двенадцатиперстной кишке, а также в начальной части тощей кишки. Чем больше дефицит железа, тем дальше в тощую кишку распространяется зона его всасывания. Процесс всасывания железа у человека включает в себя проникновение железа в слизистую оболочку из просвета кишки, проникновение железа из слизистой оболочки в плазму, заполнение запасов железа в слизистой оболочке и влияние этих запасов на всасывание. Железо проникает в слизистую оболочку из просвета кишки всегда быстрее, чем поступает из слизистой оболочки в плазму. Хотя обе величины зависят от потребностей организма в железе, проникновение железа в слизистую оболочку кишки меньше зависит от содержания железа в организме, чем проникновение железа из слизистой оболочки в плазму. При повышенной потребности организма в железе скорость его поступления в плазму из слизистой оболочки приближается к скорости проникновения в слизистую оболочку кишки. Железо при этом в кишке практически не откладывается. Прохождение железа через слизистую оболочку занимает несколько часов. В этот период кишка невосприимчива к дальнейшему всасыванию железа. Через некоторое время железо вновь всасывается с такой же интенсивностью. При уменьшении потребности организма в железе замедляется его проникновение в кишку, еще больше уменьшается поступление железа из слизистой оболочки в плазму. Большая часть железа, которое не всасывается, откладывается в кишке в виде ферритина.

Всасывание железа, входящего в состав гема, происходит значительно более интенсивно, чем всасывание неорганического пищевого железа. В слизистой оболочке кишки имеется фермент гемоксигеназа, необходимый для распада молекулы гема на билирубин, окись углерода и ионизированное железо. При нормальном содержании железа в организме значительная его часть проходит через слизистую оболочку кишки в ток крови, а определенная часть задерживается в стенке кишки. При сидеропении в слизистой оболочке задерживается значительно меньшая часть, основная часть железа оказывается в плазме. При избытке железа в организме основная часть железа, проникшего в слизистую оболочку, в ней и задерживается. Впоследствии эпителиальная клетка, наполненная железом, движется от основания к концу ворсинки, затем слущивается и выводится с калом вместе с невсосавшимся железом.

Этот физиологический механизм всасывания действует при обычных содержащихся в нормальной пище концентрациях железа. Если концентрация железа превышает в десятки и сотни раз физиологическую, то всасывание ионного двухвалентного железа во много раз возрастает. Это следует учитывать при лечении больных солями двухвалентного железа. Трехвалентное железо практически не всасывается ни в физиологических концентрациях, ни в избыточных. Всасывание пищевого железа строго лимитировано: за сутки всасывается не более 2-2,5 мг.

Железо содержится во многих продуктах как растительного, так и животного происхождения. Высока концентрация железа в мясе, печени, почках, много железа содержат бобы сои, петрушка, горох, шпинат, сушеные абрикосы, чернослив, изюм. Значительное количество железа содержится в рисе, хлебе, яблоках. Однако имеет значение не количество железа в продукте, а его всасывание из данного продукта. Из продуктов растительного происхождения железо всасывается очень ограниченно, в значительно большей степени - из большинства животных продуктов. Железо, входящее в состав белков, содержащих гем, всасывается значительно лучше, чем из ферритина и гемосидерина, а железо из печени всасывается значительно меньше, чем из мяса. Поэтому хуже всасывается железо из рыбы, так как в ней железо присутствует в основном в виде гемосидерина и ферритина, а в телятине до 90% железа содержится в виде гема.

На всасывание железа влияет ряд факторов. Частота сочетания железодефицитной анемии с ахилией (отсутствие соляной кислоты и фермента пепсина в желудочном соке) еще в XX в. дала основание предполагать, что железо всасывается лишь при нормальной желудочной секреции и ахилия является одним из основных факторов, приводящих к развитию железодефицитной анемии. Однако исследования показали, что нормальная желудочная секреция влияет на всасывание некоторых форм железа, однако это не главный фактор в регуляции его всасывания. Хлористоводородная кислота влияет лишь на всасывание трехвалентного железа. Желудочная секреция не влияет на всасывание железа, входящего в состав гема.

В норме всасывание гемоглобинового железа у здоровых женщин в среднем составляет 16,9 ± 1,6%, у мужчин - 13,6 ± 1%. При железодефицитной анемии всасывание железа резко повышено и не различается у лиц с нормальной и пониженной секрецией. Нормальным оказалось всасывание железа у лиц, перенесших удаление части желудка. У лиц с без анемии всасывание гемоглобинового железа не отличалось от всасывания железа у здоровых лиц. Доказано, что оксалаты, фитаты, фосфаты входят в комплекс с железом и снижают его всасывание, а ряд веществ усиливает всасывание железа. К ним относятся аскорбиновая, янтарная, пировиноградная кислоты, фруктоза, сорбит. Всасывание железа усиливается под влиянием алкоголя.

Недостаток кислорода, снижение запасов железа в организме, активизация кроветворения усиливают всасывание железа. Влияют на всасывание железа насыщение трансферрина, концентрация железа плазмы, скорость оборота железа, уровень эритропоэтина.

После всасывания железо связывается с трансферрином, который переносит железо к эритрокариоцитам костного мозга. Кроме того, трансферрин переносит железо от клеток, где хранятся его запасы, к эритрокариоцитам, а также от фагоцитирующих макрофагов, где железо распадается, к клеткам костного мозга и к местам, где сохраняются запасы железа. Одна молекула трансферрина присоединяет 2 атома железа.

На мембране эритрокариоцита и мембране ретикулоцитов наблюдаются специфические участки для обратимого присоединения трансферрина. Связывание железа с трансферрином и его освобождение - это активные процессы, которые подавляются ингибиторами ферментов. К поверхности ретикулоцита могут присоединяться 25 000-50 000 молекул трансферрина, нагруженных железом. Меченый по железу трансферрин легко присоединяется к ретикулоцитам, но не присоединяется к лейкоцитам, тромбоцитам и зрелым эритроцитам.

После того как трансферрин «разгружает» железо на поверхности эритрокариоцитов, оно проникает внутрь клетки. Трансферрин в большинстве случаев способен возвращаться в плазму, но некоторые его молекулы проникают внутрь эритрокариоцита и связываются с молекулой носителя. Железо проникает в митохондрии, где происходит синтез гема из протопорфирина и железа. Образование ферритина происходит в эритрокариоците из белка апоферритина, синтезируемого в клетке, и железа, проникшего в клетку.

Наиболее вероятно, что синтез ферритина в эритрокариоците нужен для удаления из клетки избыточного железа, не вошедшего в гемоглобин. Этот ферритин собирается в лизосомах, а затем удаляется из клетки как в костном мозге, так и в циркуляции после удаления из клетки ядра. В удалении гранул железа из циркулирующей клетки участвует, по‑видимому, селезенка, так как в эритроцитах людей после удаления селезенки обнаруживаются гранулы железа, а в норме выявить их в зрелых эритроцитах не удается.

Основным белком, используемым для сохранения избытка железа в организме, является ферритин. Ферритин - это водорастворимый комплекс гидроокиси трехвалентного железа и белка - апоферритина. Гидроокись железа соединена с остатком фосфорной кислоты. Молекула ферритина напоминает по форме грецкий орех: скорлупа ореха - это белок апоферритин, а внутри находятся в различном количестве атомы железа, почти вплотную прилегающие один к другому. Ферритин может вместить до 4500 атомов железа, практически 1 молекула содержит около 3000 атомов. Молекулярная масса ферритина зависит от числа атомов железа, а этот показатель может колебаться. В среднем молекулярная масса ферритина близка к 460 000. Ферритин в норме имеется в плазме и практически почти во всех клетках организма, но больше всего - в печени и мышцах.

Гемосидерин - белок, содержащий железо, обнаруживаемый в фагоцитирующих макрофагах и их производных, в макрофагах костного мозга и селезенки, в купферовских клетках печени. Гемосидерин - это частично денатурированный и депротеинизированный ферритин. Иммунологически гемосидерин полностью идентичен ферритину. Молекула ферритина содержит 20% железа, а в гемосидерине железа больше - 25-30%. В отличие от ферритина гемосидерин нерастворим в воде.

Как гемосидерин, так и ферритин используются в качестве белков запаса, однако скорость мобилизации гемосидерина значительно более медленная, чем ферритина. Железо запасов может быть как в паренхиматозных клетках, так и в фагоцитирующих макрофагах. В норме основную часть железа, связанного с трансферрином, организм использует для кроветворения. Фагоцитирующие макрофаги, получившие железо при разрушении в них эритроцитов, в основном передают это железо трансферрину, который вновь использует его для кроветворения. Паренхиматозные клетки тоже содержат железо, но в основном в запасах, и лишь малая часть его передается трансферрину и используется для эритропоэза. Паренхиматозные клетки в свою очередь получают железо из трансферрина.

В отличие от железа макрофагов железо, находящееся в паренхиматозных клетках, расходуется медленно. Аскорбиновая кислота увеличивает освобождение железа из макрофагов, но не влияет на его освобождение из паренхиматозных клеток. Освобождение железа из паренхиматозных клеток увеличивается при кровотечениях и уменьшается при массивных гемотрансфузиях. При кровотечениях уменьшается захват эритроцитов макрофагами, следовательно, освобождение железа макрофагами в такой ситуации имеет меньшее значение.

Понятие «лабильный пул железа» появилось при изучении кинетики железа. Оно покидает плазму и входит в интерстициальное пространство тканей. Там железо может связываться с клеточными мембранами. Его часть возвращается в плазму, и этот процесс приводит к отклонению линии клиренса железа, что выявляется в 1‑й или во 2‑й день после введения радиоактивного железа. Изменение в наклоне линии зависит от количества так называемого лабильного пула. Рассчитано, что в норме лабильный пул содержит 80-90 мг железа.

Тканевое железо - это 6-8 мг железа, входящего в состав цитохромов и других ферментов всех тканей организма.

Мужчины за сутки теряют около 1 мг железа. Потери железа у неменструирующих женщин соответствуют этим цифрам. Потери железа у менструирующих женщин намного превышают потери железа у мужчин. Они слагаются из потерь, свойственных мужчинам, и потерь, свойственных только женщинам: потери железа во время менструальных кровотечений, во время беременности, родов и лактации.

По данным различных исследований, потери железа у здоровых женщин колеблются от 2 до 79 мг за одну менструацию. В среднем они теряют за время менструации 30 мл крови, что соответствует 15 мг железа, однако у 11% здоровых женщин количество теряемой крови превышает 80 мл (40 мг железа). Такую кровопотерю гинекологи считают нормальной. У рожавших женщин кровопотеря несколько больше, чем у нерожавших. Таким образом, при расчете потери железа на 1 день месяца следует учитывать, что при нормальных менструациях женщины теряют в день от 0,5 до 1,2 мг железа.

Во время беременности потеря железа составляет не менее 700-800 мг, а потребности в железе во время беременности большие, они составляют 800-1200 мг.

← + Ctrl + →
Глава 6. Эритроциты Глава 7. Система гемостаза

Метаболизм железа и дефицит железа.

Для оценки эффективности, безопасности и удобства применения различных препаратов железа, включая Мальтофер ® , для лечения железодефицитной анемии, необходимо рассмотреть метаболизм железа в организме и факторы, вызывающие железодефицитную анемию.

1.1. Эритропоэз

Необходимое количество эритроцитов, циркулирующих в кровяном русле, поддерживается путем контроля их образования, а не продолжительности жизни. Клетки крови развиваются из стволовых клеток, расположенных в костном мозге, и дифференцирующихся в лимфоциты, тромбоциты, гранулоциты и эритроциты. Их производство контролирует механизм обратной связи, и до тех пор, пока уже образованные клетки не созреют или не выйдут из костного мозга в кровоток, новые клетки не развиваются, чтобы их заменить (Danielson и Wirkstrom, 1991). Эритропоэтин (ЭПО), вырабатываемый почками гормон, играет важную роль на этапе развития будущих эритроцитов. ЭПО, возможно, взаимодействует со специфическими рецепторами на поверхности эритроидных стволовых клеток и стимулирует их превращение в пронормобласты, самую раннюю стадию развития эритроцитов, которые могут быть обнаружены при исследовании костного мозга. На следующем этапе, ЭПО стимулирует непрерывное развитие красных кровяных клеток путем усиления синтеза гемоглобина. Образовавшиеся ретикулоциты остаются в костном мозге около трех дней перед тем, как попасть в кровяное русло, где они приблизительно через 24 часа теряют свое ядро, митохондрии, рибосомы и приобретают хорошо знакомую двояковогнутую форму эритроцитов.

Таблица 1-1

Распределение железа в организме взрослого человека. (Danielson с соавторами, 1996).

1.2. Метаболизм железа.

1.2.1. Обмен железа.

У взрослого здорового человека в среднем содержится около 3-4 г железа (40-50 мг Fe/кг массы тела). Около 60 % (2,4 г) всего железа находится в гемоглобине, а примерно 30% железа входит в состав ферритина - депо железа. Депо железа - величина непостоянная, и определяется разницей между поступившим и выделенным из организма железом. Около 9% железа находится в миоглобине, белке, переносящем кислород в мышцах. Приблизительно 1% железа входит в состав ферментов, таких как цитохромы, каталазы, пероксидазы и др. Эти данные суммированы в Табл. 1-1 и представлены на Рис. 1-1.

Метаболизм железа в организме представляет один из самых высокоорганизованных процессов, при котором практически все железо, высвобождающееся при распаде гемоглобина и других железосодержащих белков, вновь утилизируется. Поэтому, несмотря на то, что ежедневно абсорбируется и выводится лишь очень малое количество железа, его метаболизм в организме очень динамичный (Aisen, 1992; Worwood, 1982).

Рисунок 1-1

Обмен железа. Схематическая иллюстрация обмена железа в организме. ЭПО: Эритропоэтин; РЭК: Ретикулоэндотелиальные клетки. (Danielson с соавторами, 1996)

1.2.2. Всасывание железа

Способность организма выводить железо строго ограничена. Таким образом, процесс всасывания железа является основным в поддержании гомеостаза железа.

В целом, только малая часть железа, содержащегося в продуктах, абсорбируется. Количество всосавшегося железа определяется меж- и внутри индивидуальными различиями (Chapman и Hall, 1995).

Кальций подавляет абсорбцию как гемового, так и негемового железа. Наиболее вероятно, что данный эффект осуществляется на общем транспортном этапе в клетках кишечника.

Железо всасывается как в виде гема (10% поглощаемого железа), так и в негемовой (9%) форме с помощью ворсинок верхней части тонкого кишечника. Сбалансированная ежедневная диета содержит около 5-10 мг железа (гемового и негемового), но всасывается лишь 1-2 мг. Гемовое железо содержится лишь в небольшой части пищевого рациона (мясные продукты). Оно очень хорошо всасывается (на 20-30%) и на его усвоение не влияют другие компоненты пищи. Большая часть пищевого железа -негемовое (оно содержится в основном в листовых овощах). Степень его усвоения определяется рядом факторов, которые могут, как мешать, так и способствовать абсорбции железа. Большая часть трехвалентного железа Fe (III) образует нерастворимые соли, например, c фитином, таннином и фосфатами, присутствующими в продуктах питания, и выводится с калом. Биодоступность трехвалентного железа из пищевых продуктов и синтетических гидроокисных комплексов железа (III) определяется скоростью высвобождения железа из них и концентрацией железосвязывающих белков, таких как трансферрин, ферритин, муцины, интегрины и мобилферрин. Количество железа, абсорбируемого организмом, строго контролируется механизмом, детали которого еще недостаточно изучены. Были выявлены различные факторы, которые влияют на усвоение железа, например уровень гемоглобина, величина запасов железа, степень эритропоэтической активности костного мозга и концентрация связанного с трансферрином железа. В тех случаях, когда синтез гемоглобина и эритроцитов повышен, например, во время беременности, у растущих детей, или после кровопотери, уровень всасывания железа возрастает (см. Рис. 1-2 Danielson с соавторами, 1996).

Рисунок 1-2


Всасывание гемового и негемового железа. Принципы всасывания гемового и негемового железа из пищи (Danielson с соавторами, 1996, модифицировано Geisser).
Гемовое железо. Всасывается как железопорфириновый комплекс с помощью специальных рецепторов. Не подвержено влиянию различных факторов в просвете кишечника
Негемовое железо. Всасывается как разновидность железа поступающего из солей железа. На процесс абсорбции в кишечнике оказывает влияние ряд факторов: концентрация солей железа, пищевые продукты, рН, лекарственные препараты. Всасывается в виде железа, образующегося из комплексов Fe (III). Находется под влиянием обмена таких железосвязывающих белков, как трансферрин, муцины, интегрины, и мобилферрин.
Оксигеназа гема , специальный фермент, стимулирует распад комплекса железа и порфирина.

1.2.3. Транспорт железа.

В клетках слизистой оболочки тонкого кишечника, во время процесса всасывания, закисное железо Fe(II) превращается в окисное железо Fe(III) для того, чтобы быть включенным в состав трансферрина и транспортироваться по всему организму. Трансферрин синтезируется печенью. Он отвечает за транспортировку не только всосавшегося в кишечнике железа, но и железа, поступающего из разрушенных эритроцитов для повторного использования. В физиологических условиях заняты не более, чем 30% железосвязывающих рецепторов трансферрина плазмы. Это определяет общую железосвязывающую способность плазмы как 100-150 мкг/100 мл (Danielson с соавторами, 1996; Chapman и Hall, 1995).

Молекулярный вес железотрансферринового комплекса слишком велик для того, чтобы выделяться почками, поэтому он остается в кровеносном русле.

1.2.4. Хранение железа.

Железо хранится в организме в виде ферритина и гемосидерина. Из этих двух белков, на долю ферритина приходится большая часть хранимого железа, которое представлено в виде гидроокиси/окиси железа, заключенной в белковую оболочку, апоферритин. Ферритин обнаруживается практически во всех клетках, обеспечивая легкодоступный резерв для синтеза железосодержащих соединений и представляя железо в растворимой, неионной и, безусловно, нетоксичной форме. Наиболее богаты ферритином предшественники эритроцитов в костном мозге, макрофаги и ретикулоэндотелиальные клетки печени. Гемосидерин рассматривают как уменьшенную форму ферритина, в которой молекулы потеряли часть белковой оболочки и сгруппировались вместе. При избытке железа, часть его, хранимая в печени в виде гемосидерина, увеличивается.

Запасы железа расходуются и возмещаются медленно и, поэтому, недоступны для экстренного синтеза гемоглобина при компенсации последствий острого кровотечения или других видов кровопотерь (Worwood, 1982).

1.2.5. Регуляция метаболизма железа.

Когда организм насыщен железом, то есть, им «заполнены» все молекулы апоферритина и трансферрина, уровень всасывания железа в желудочно-кишечном тракте уменьшается. Напротив, при сниженных запасах железа, степень его абсорбции увеличивается настолько, что поглощение становится значительно больше, чем в условиях пополненных запасов железа.

Когда почти весь апоферритин насыщается, трансферрину становится сложно высвобождать железо в тканях. В то же время и степень насыщения трансферрина увеличивается и он исчерпывает все свои резервы в связывании железа (Danielson и Wirkstrom, 1991).

1.3. Железодефицитная анемия

1.3.1. Определения

Недостаточность железа определяется как дефицит общего количества железа, обусловленный несоответствием между возросшими потребностями организма в железе и его поступлением, или его потерями, приводящими к отрицательному балансу. В общем, могут быть выделены две стадии недостатка железа (Siegenthaler, 1994):
Латентный дефицит железа: Уменьшение запасов железа: уровень железа ферритина снижен; увеличена концентрация эритроцитарного протопорфирина; насыщение трансферрина уменьшено; уровень гемоглобина в норме.
Железодефицитная анемия (клинически выраженный дефицит железа): После истощения запасов железа, синтез гемоглобина и других железосодержащих соединений, необходимых для метаболизма, ограничен: уменьшается количество ферритина; концентрация эритроцитарного протопорфирина растет; насыщение трансферрина падает; уровень гемоглобина снижается. Развивается железодефицитная анемия (клинически выраженный дефицит железа).

1.3.2. Эпидемиология

Дефицит железа остается самой частой причиной анемии в мире. Распространенность его определяется физиологическими, патологическими факторами и особенностями питания (Charlton и Bothwell, 1982; Black, 1985).

Предполагают, что в мире страдает железодефицитной анемией около 1.800.000.000 человек (ВОЗ, 1998). Согласно данным ВОЗ, дефицит железа определяется как минимум у 20-25% всех младенцев, у 43% детей в возрасте до 4 лет и 37% детей от 5 до 12 лет (ВОЗ, 1992). Даже в развитых странах эти цифры не ниже 12% - у детей до 4 лет и 7% детей в возрасте от 5 до 12 лет. Латентная форма недостатка железа, конечно, поражает не только маленьких детей, но и подростков. Проведенное в Японии исследование, показало, что латентная форма недостатка железа развивается у 71,8% школьниц уже через три года после начала менструации (Kagamimori с соавторами, 1988).

Современное питание в совокупности с пищевыми добавками, а также использование дополнительных источников железа, уменьшили общую заболеваемость и выраженность дефицита железа. Несмотря на это, обеспечение железом все еще остается проблемой у некоторых групп населения, а именно - у женщин. Из-за ежемесячных кровопотерь и вынашивания детей, у более, чем 51% женщин детородного возраста во всем мире обнаруживаются недостаточные запасы железа или их отсутствие. Без поступления железа извне, у большинства женщин во время беременности возникает дефицит железа (DeMaeyer с соавторами, 1989).

Среди населения, употребляющего пищу, содержащую железо с низкой биодоступностью или страдающего от хронических желудочно-кишечных кровопотерь, вследствие, например, глистной инвазии, и, безусловно, при сочетании обоих факторов, распространенность недостаточности железа наибольшая.

1.3.3. Этиология и патогенез

Кровопотери являются наиболее частой причиной недостаточности железа. Для детей старшего возраста, мужчин, и женщин в постменопаузе ограниченная доступность пищевого железа в редких случаях может служить единственным объяснением имеющегося дефицита железа. Поэтому, у них обязательно должны рассматриваться другие возможные причины дефицита, в особенности, кровопотери.

У женщин детородного возраста наиболее частой причиной повышенной потребности в железе является менструальная кровопотеря. Во время беременности дополнительная потребность в железе (около 1.000 мг на весь период беременности), должна восполняться во избежание развития железодефицитной анемии. Новорожденным, детям и подросткам может также недоставать поступающего с пищей и из депо железа (см. следующую подглаву).

Нарушение всасывания железа бывает одной из причин его недостатка. У некоторых больных, нарушенная абсорбция железа в кишечнике может маскироваться общими синдромами, такими как стеаторрея, спру, целиакия или диффузный энтерит. Атрофический гастрит и сопутствующая ахлоргидрия также могут уменьшать всасывание железа. Недостаточность железа часто возникает после операций на желудок и гастроэнтеростомии. Плохой абсорбции железа могут способствовать как снижение продукции соляной кислоты, так и уменьшение времени, необходимого для всасывания железа. Менструирующие женщины, имеющие повышенную потребность в железе, могут употреблять продукты с очень низким содержанием железа и/или содержащие ингибиторы всасывания железа, такие как кальций, фитины, таннины или фосфаты. Больные с пептической язвой, склонные к желудочно-кишечным кровопотерям, могут принимать антациды, которые уменьшают всасывание железа с пищей.

Количество железа, содержащееся в пище, также имеет большое значение. Именно этот фактор объясняет высокую частоту железодефицитной анемии в развивающихся странах. Различия между гемовым и негемовым железом являются решающими для понимания особенностей их биодоступности. Гемовое железо легко усваивается, приблизительно на 30%. Его абсорбция мало зависит от состава пищи, в то время как негемовое железо хорошо всасывается лишь при определенных условиях. Если в пище отсутствуют компоненты, способствующие всасыванию железа (например, аскорбиновая кислота), усваивается менее чем 7% железа, содержащегося в таких овощах, как рис, кукуруза, фасоль, соя, пшеница. Следует отметить, что некоторые вещества, присутствующие в рыбе и мясе, увеличивают биодоступность негемового железа. Таким образом, мясо одновременно является и источником гемового железа и усиливает всасывание негемового железа (Charlton и Bothwell, 1982).

1.4. Латентный дефицит железа и умственные нарушения

Эпидемиология, этиология и патогенез описаны в предыдущих главах.

Такие симптомы как слабость, упадок сил, рассеянное внимание, пониженная работоспособность, трудности с подбором правильных слов и забывчивость, часто ассоциируются с анемией. Принято объяснять эти клинические проявления исключительно сниженной способностью эритроцитов переносить кислород.

В этой главе кратко показано, что железо само по себе оказывает влияние на мозг и, следовательно, на умственные процессы. Поэтому такие симптомы могут встречаться и у лиц, имеющих лишь дефицит железа при отсутствии анемии (латентный дефицит железа).

1.4.1. Влияние содержания железа на функции головного мозга

В исследовании, включавшем 69 студентов - правшей, Tucker с соавторами (1984) исследовали уровень сывороточного железа и ферритина, а также активность головного мозга, как в покое, так и в состоянии напряжения, пытаясь выявить возможные корреляции между гематологическими параметрами и активностью мозга, а также умственными способностями. Полученные результаты были неожиданными. От уровня железа в организме зависели и активность левого полушария, и умственные способности. Было установлено, что, чем ниже уровень ферритина, тем слабее активность не только левого полушария, но и затылочной доли обоих полушарий.

Это означает, что, если уровень ферритина сыворотки низкий, доминантное полушарие в целом, и зоны центров оптической памяти обоих полушарий, менее активны. А поскольку эти центры, а также область визуальной речи и область сенсорной речи левого полушария являются основными в функции памяти, становится очевидным, что состояние дефицита железа может привести к ослаблению памяти.

Одновременно результаты этого исследования показали корреляцию между уровнем железа и познавательной активностью. В частности, беглость речи (измеряемая способностью человека придумывать слова, начинающиеся и заканчивающиеся определенными буквами) была снижена при уменьшенных запасах железа. Это не удивительно, так как области речи доминантного полушария менее активны, при низком уровне железа.

Суммируя приведенные результаты, можно сказать, что и активность мозга, и познавательные способности зависят от уровня железа в организме. (Tucker с соавторами, 1984).

В этой связи, встает вопрос о том, какой механизм лежит в основе латерализации активности мозга. Ранее предполагалось, что типичные симптомы недостатка железа, такие как слабость, плохая концентрация внимания и т.д., обусловлены только низким уровнем гемоглобина. Однако, маловероятно, чтобы низкий уровень гемоглобина смог уменьшить активность только определенных областей мозга.

Это исследование, также как и ряд других (Oski с соавторами, 1983; Lozoff с соавторами, 1991), показали, что познавательные способности были снижены у больных с латентным дефицитом железа.

Существует два различных пути влияния дефицита железа на функциональную активность мозга.

  • во-первых, железо играет важную роль в допаминергических системах
  • во-вторых, уровень железа оказывает влияние на миелинизацию нервных волокон.
  • Как показал Youdim с соавторами (1989), обмен железа в головном мозге находится на очень низком уровне, а способность мозга запасать железо значительно менее выражена, чем у печени. Однако, в отличие от печени, головной мозг в большей степени удерживает железо и препятствует истощению его запасов. Уменьшение запасов железа, вызванное его нехваткой, происходит быстрее в печени, чем в головном мозге. С другой стороны, после восполнения запасов железа, его уровень возрастает намного быстрее в печени, чем в мозге, и, кроме того, уровень железа в печени также выше, чем в мозге.

    Рисунок 1-3


    Познавательная активность головного мозга и уровень железа. Переработано из материалов Tucker с соавторами (1984)

    Единственным объяснением более медленного изменения уровня железа в головном мозге является то, что процесс, благодаря которому железо проходит гематоэнцефалический барьер (ГЭБ), отличается от процессов всасывания железа в кишечнике и хранения его в печени. ГЭБ пропускает дополнительное количество железа только в том случае, когда имеется дефицит железа.

    Физиология нервных синапсов:

    В результате генерации электрического импульса происходит высвобождение допамина. Допамин связывается как постсинаптически, т.е. последующей нервной клеткой, так и пресинаптически, т.е. данной клеткой. Если он был захвачен последующей нервной клеткой, то он фиксируется допамин-2-рецептором (Д2-рецептор) и стимулирует нервную клетку. Таким образом, импульс переходит с одной клетки на другую. Если допамин захватывается выделившей его клеткой, он связывается с допамин-1-рецептором и посылает обратный сигнал, который прекращает дальнейший синтез допамина. В случае недостатка железа, количество или чувствительность Д2-рецепторов снижается (Youdim с соавторами, 1989). В результате, стимулирующий эффект допамина на следующую клетку уменьшается, и количество проходящих импульсов сокращается.

    Было описано три возможных железо-зависимых механизма, которые могут привести к уменьшению количества и чувствительности допамин-2-рецепторов (Yehuda и Youdim, 1989):
    1. Железо может входить в состав участка допаминового рецептора, к которому прикрепляются нейротрансмиттеры.
    2. Железо является компонентом двойного мембранно-липидного слоя, в который включены рецепторы.
    3. Железо вовлечено в синтез допамин-2-рецепторов.

    Рисунок 1-4


    Допаминовые рецепторы. В условиях дефицита железа, количество или чувствительность Д2-рецепторов снижается. (Youdim с соавторами, 1989).

    Влияние Д2-рецепторов на процесс обучения:

    Области мозга, в которых, как известно, концентрация железа наиболее высокая, также имеют самую густую сеть нейронов, специфически реагирующих на опиатные пептиды (энкефалины, эндорфины и т.д.). За последние несколько лет стало очевидным, что эндогенные опиатные пептиды вовлечены в процессы памяти и обучения, так как введение таких пептидов вызывает амнезию и забывчивость (Pablo, 1983 и 1985).

    Yehuda с соавторами (1988) показал, что у крыс с недостатком железа имеется очевидное увеличение опиатных пептидов. Лежащий в основе этого механизм изучен недостаточно полно, тем не менее, считается, что допамин является ингибитором опиатов. Другими словами, оказалось, что опиаты уменьшают способность к обучению, а допамин является ингибитором опиатов. Чем меньше Д2-рецепторов, тем менее выражен эффект допамина, что влечет за собой увеличение содержания опиатов (см. Рис. 1-5).

    Рисунок 1-5


    Способность к обучению. Переработано из материалов Yehuda с соавторами (1988)

    Влияние железа на миелинизацию:

    Yu с соавторами показали в исследовании на крысятах (1986), что недостаток железа у самки во время беременности и лактации, приводит к снижению миелинизации нервных клеток у крысят по сравнению с потомством крыс, имевших достаточное содержание железа. Очевидно, что если миелиновые оболочки дефектны, то импульсы не могут проходить должным образом, и, в результате, нормальная работа нервных клеток нарушается. Вследствие этого могут развиваться психические нарушения, часто необратимые (см. главу 4.1.2.).

    Рисунок 1-6


    Нейрон и синапс. При нарушении целостности миелиновой оболочки нарушается процесс прохождения импульсов и функции нервной клетки. В результате возникают психические отклонения, которые могут быть необратимы.

    Преимущественное развитие мозга человека происходит в перинатальном периоде и в первые годы жизни. Поэтому очень важно избежать дефицита железа именно в это время.

    Как уже упоминалось ранее, скрытый недостаток железа встречается не только в детском возрасте, но также может развиваться у подростков и молодых женщин. Исследование, проведенное в Японии, показало, что 71,8% школьниц страдают от скрытого недостатка железа уже через три года после начала менструации (Kagamimori с соавторами, 1988).

    1.4.2. Симптомы скрытого недостатка железа:

  • слабость, утомление
  • беспокойство, недостаточная концентрация внимания
  • утренние головные боли
  • депрессивная дисфория, психологическая лабильность
  • снижение работоспособности
  • пониженный аппетит
  • повышенная предрасположенность к инфекциям
  • трудность в подборе слов (беглость речи), забывчивость
  • 1.5. Диагностика

    1.5.1. Методы оценки содержания железа

    Такие признаки и симптомы анемии, как бледность кожи и конъюнктивы, слабость, одышка или сниженный аппетит, не являются специфичными и выявляются с трудом. Кроме того, на клиническую диагностику анемии влияют множество факторов, например, толщина кожи и степень ее пигментации. Поэтому, указанные симптомы не могут считаться надежными до тех пор, пока анемия не станет очень тяжелой. Таким образом, для диагностики латентного дефицита железа следует использовать лабораторные тесты (см. Рис. 1-7). Поскольку латентный дефицит железа не упоминается на Рис. 1-7, пожалуйста, посмотрите в главе 1.3.1. показатели, рекомендуемые для изучения начальной стадии анемии, а также ее выраженности.

    Рисунок 1-7


    Стадии развития железодефицитной анемии. Схема, иллюстрирующая различные уровни железа в условиях его избытка и недостатка. (Danielson с соавторами, 1996).

    Наиболее информативные тесты для диагностики анемии включают оценку общего объема всех эритроцитов (гематокрит) или концентрацию гемоглобина в циркулирующей крови. Оба измерения могут проводиться как в капиллярной крови, получаемой после прокола кожи, так и венозной крови, забираемой путем венепункции (DeMaeyer с соавторами, 1989).



    КАТЕГОРИИ

    ПОПУЛЯРНЫЕ СТАТЬИ

    © 2024 «gcchili.ru» — Про зубы. Имплантация. Зубной камень. Горло